Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Learning Frame Similarity using Siamese networks for Audio-to-Score Alignment (2011.07546v1)

Published 15 Nov 2020 in cs.SD, cs.IR, cs.LG, and eess.AS

Abstract: Audio-to-score alignment aims at generating an accurate mapping between a performance audio and the score of a given piece. Standard alignment methods are based on Dynamic Time Warping (DTW) and employ handcrafted features, which cannot be adapted to different acoustic conditions. We propose a method to overcome this limitation using learned frame similarity for audio-to-score alignment. We focus on offline audio-to-score alignment of piano music. Experiments on music data from different acoustic conditions demonstrate that our method achieves higher alignment accuracy than a standard DTW-based method that uses handcrafted features, and generates robust alignments whilst being adaptable to different domains at the same time.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.