Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Entropic regularization of Wasserstein distance between infinite-dimensional Gaussian measures and Gaussian processes (2011.07489v3)

Published 15 Nov 2020 in stat.ML, cs.LG, and math.PR

Abstract: This work studies the entropic regularization formulation of the 2-Wasserstein distance on an infinite-dimensional Hilbert space, in particular for the Gaussian setting. We first present the Minimum Mutual Information property, namely the joint measures of two Gaussian measures on Hilbert space with the smallest mutual information are joint Gaussian measures. This is the infinite-dimensional generalization of the Maximum Entropy property of Gaussian densities on Euclidean space. We then give closed form formulas for the optimal entropic transport plan, entropic 2-Wasserstein distance, and Sinkhorn divergence between two Gaussian measures on a Hilbert space, along with the fixed point equations for the barycenter of a set of Gaussian measures. Our formulations fully exploit the regularization aspect of the entropic formulation and are valid both in singular and nonsingular settings. In the infinite-dimensional setting, both the entropic 2-Wasserstein distance and Sinkhorn divergence are Fr\'echet differentiable, in contrast to the exact 2-Wasserstein distance, which is not differentiable. Our Sinkhorn barycenter equation is new and always has a unique solution. In contrast, the finite-dimensional barycenter equation for the entropic 2-Wasserstein distance fails to generalize to the Hilbert space setting. In the setting of reproducing kernel Hilbert spaces (RKHS), our distance formulas are given explicitly in terms of the corresponding kernel Gram matrices, providing an interpolation between the kernel Maximum Mean Discrepancy (MMD) and the kernel 2-Wasserstein distance.

Citations (13)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)