Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Identifying and tracking bubbles and drops in simulations: a toolbox for obtaining sizes, lineages, and breakup and coalescence statistics (2011.07243v1)

Published 14 Nov 2020 in physics.flu-dyn, cs.CE, physics.ao-ph, and physics.comp-ph

Abstract: Knowledge of bubble and drop size distributions in two-phase flows is important for characterizing a wide range of phenomena, including combustor ignition, sonar communication, and cloud formation. The physical mechanisms driving the background flow also drive the time evolution of these distributions. Accurate and robust identification and tracking algorithms for the dispersed phase are necessary to reliably measure this evolution and thereby quantify the underlying mechanisms in interface-resolving flow simulations. The identification of individual bubbles and drops traditionally relies on an algorithm used to identify connected regions. This traditional algorithm can be sensitive to the presence of spurious structures. A cost-effective refinement is proposed to maximize volume accuracy while minimizing the identification of spurious bubbles and drops. An accurate identification scheme is crucial for distinguishing bubble and drop pairs with large size ratios. The identified bubbles and drops need to be tracked in time to obtain breakup and coalescence statistics that characterize the evolution of the size distribution, including breakup and coalescence frequencies, and the probability distributions of parent and child bubble and drop sizes. An algorithm based on mass conservation is proposed to construct bubble and drop lineages using simulation snapshots that are not necessarily from consecutive time-steps. These lineages are then used to detect breakup and coalescence events, and obtain the desired statistics. Accurate identification of large-size-ratio bubble and drop pairs enables accurate detection of breakup and coalescence events over a large size range. Together, these algorithms enable insights into the mechanisms behind bubble and drop formation and evolution in flows of practical importance.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube