Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Reinforced Molecular Optimization with Neighborhood-Controlled Grammars (2011.07225v1)

Published 14 Nov 2020 in cs.LG and q-bio.BM

Abstract: A major challenge in the pharmaceutical industry is to design novel molecules with specific desired properties, especially when the property evaluation is costly. Here, we propose MNCE-RL, a graph convolutional policy network for molecular optimization with molecular neighborhood-controlled embedding grammars through reinforcement learning. We extend the original neighborhood-controlled embedding grammars to make them applicable to molecular graph generation and design an efficient algorithm to infer grammatical production rules from given molecules. The use of grammars guarantees the validity of the generated molecular structures. By transforming molecular graphs to parse trees with the inferred grammars, the molecular structure generation task is modeled as a Markov decision process where a policy gradient strategy is utilized. In a series of experiments, we demonstrate that our approach achieves state-of-the-art performance in a diverse range of molecular optimization tasks and exhibits significant superiority in optimizing molecular properties with a limited number of property evaluations.

Citations (19)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.