Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 126 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Bi-Dimensional Feature Alignment for Cross-Domain Object Detection (2011.07205v1)

Published 14 Nov 2020 in cs.CV

Abstract: Recently the problem of cross-domain object detection has started drawing attention in the computer vision community. In this paper, we propose a novel unsupervised cross-domain detection model that exploits the annotated data in a source domain to train an object detector for a different target domain. The proposed model mitigates the cross-domain representation divergence for object detection by performing cross-domain feature alignment in two dimensions, the depth dimension and the spatial dimension. In the depth dimension of channel layers, it uses inter-channel information to bridge the domain divergence with respect to image style alignment. In the dimension of spatial layers, it deploys spatial attention modules to enhance detection relevant regions and suppress irrelevant regions with respect to cross-domain feature alignment. Experiments are conducted on a number of benchmark cross-domain detection datasets. The empirical results show the proposed method outperforms the state-of-the-art comparison methods.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.