Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Phoebe: Reuse-Aware Online Caching with Reinforcement Learning for Emerging Storage Models (2011.07160v1)

Published 13 Nov 2020 in cs.PF, cs.AI, cs.LG, and cs.OS

Abstract: With data durability, high access speed, low power efficiency and byte addressability, NVMe and SSD, which are acknowledged representatives of emerging storage technologies, have been applied broadly in many areas. However, one key issue with high-performance adoption of these technologies is how to properly define intelligent cache layers such that the performance gap between emerging technologies and main memory can be well bridged. To this end, we propose Phoebe, a reuse-aware reinforcement learning framework for the optimal online caching that is applicable for a wide range of emerging storage models. By continuous interacting with the cache environment and the data stream, Phoebe is capable to extract critical temporal data dependency and relative positional information from a single trace, becoming ever smarter over time. To reduce training overhead during online learning, we utilize periodical training to amortize costs. Phoebe is evaluated on a set of Microsoft cloud storage workloads. Experiment results show that Phoebe is able to close the gap of cache miss rate from LRU and a state-of-the-art online learning based cache policy to the Belady's optimal policy by 70.3% and 52.6%, respectively.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.