Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 124 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Adaptive Learning of Compressible Strings (2011.07143v3)

Published 13 Nov 2020 in cs.DS

Abstract: Suppose an oracle knows a string $S$ that is unknown to us and that we want to determine. The oracle can answer queries of the form "Is $s$ a substring of $S$?". In 1995, Skiena and Sundaram showed that, in the worst case, any algorithm needs to ask the oracle $\sigma n/4 -O(n)$ queries in order to be able to reconstruct the hidden string, where $\sigma$ is the size of the alphabet of $S$ and $n$ its length, and gave an algorithm that spends $(\sigma-1)n+O(\sigma \sqrt{n})$ queries to reconstruct $S$. The main contribution of our paper is to improve the above upper-bound in the context where the string is compressible. We first present a universal algorithm that, given a (computable) compressor that compresses the string to $\tau$ bits, performs $q=O(\tau)$ substring queries; this algorithm, however, runs in exponential time. For this reason, the second part of the paper focuses on more time-efficient algorithms whose number of queries is bounded by specific compressibility measures. We first show that any string of length $n$ over an integer alphabet of size $\sigma$ with $rle$ runs can be reconstructed with $q=O(rle (\sigma + \log \frac{n}{rle}))$ substring queries in linear time and space. We then present an algorithm that spends $q \in O(\sigma g\log n)$ substring queries and runs in $O(n(\log n + \log \sigma)+ q)$ time using linear space, where $g$ is the size of a smallest straight-line program generating the string.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.