Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Arabic Dialect Identification Using BERT-Based Domain Adaptation (2011.06977v1)

Published 13 Nov 2020 in cs.CL and cs.LG

Abstract: Arabic is one of the most important and growing languages in the world. With the rise of social media platforms such as Twitter, Arabic spoken dialects have become more in use. In this paper, we describe our approach on the NADI Shared Task 1 that requires us to build a system to differentiate between different 21 Arabic dialects, we introduce a deep learning semi-supervised fashion approach along with pre-processing that was reported on NADI shared Task 1 Corpus. Our system ranks 4th in NADI's shared task competition achieving a 23.09% F1 macro average score with a simple yet efficient approach to differentiating between 21 Arabic Dialects given tweets.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.