Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 362 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Single-pass randomized QLP decomposition for low-rank approximation (2011.06855v2)

Published 13 Nov 2020 in math.NA and cs.NA

Abstract: The QLP decomposition is one of the effective algorithms to approximate singular value decomposition (SVD) in numerical linear algebra. In this paper, we propose some single-pass randomized QLP decomposition algorithms for computing the low-rank matrix approximation. Compared with the deterministic QLP decomposition, the complexity of the proposed algorithms does not increase significantly and the system matrix needs to be accessed only once. Therefore, our algorithms are very suitable for a large matrix stored outside of memory or generated by stream data. In the error analysis, we give the bounds of matrix approximation error and singular value approximation error. Numerical experiments also reported to verify our results.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.