Papers
Topics
Authors
Recent
2000 character limit reached

Critic PI2: Master Continuous Planning via Policy Improvement with Path Integrals and Deep Actor-Critic Reinforcement Learning (2011.06752v1)

Published 13 Nov 2020 in cs.LG, cs.NE, and cs.RO

Abstract: Constructing agents with planning capabilities has long been one of the main challenges in the pursuit of artificial intelligence. Tree-based planning methods from AlphaGo to Muzero have enjoyed huge success in discrete domains, such as chess and Go. Unfortunately, in real-world applications like robot control and inverted pendulum, whose action space is normally continuous, those tree-based planning techniques will be struggling. To address those limitations, in this paper, we present a novel model-based reinforcement learning frameworks called Critic PI2, which combines the benefits from trajectory optimization, deep actor-critic learning, and model-based reinforcement learning. Our method is evaluated for inverted pendulum models with applicability to many continuous control systems. Extensive experiments demonstrate that Critic PI2 achieved a new state of the art in a range of challenging continuous domains. Furthermore, we show that planning with a critic significantly increases the sample efficiency and real-time performance. Our work opens a new direction toward learning the components of a model-based planning system and how to use them.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.