Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Towards Better Approximation of Graph Crossing Number (2011.06545v2)

Published 12 Nov 2020 in cs.DS and cs.CG

Abstract: Graph Crossing Number is a fundamental problem with various applications. In this problem, the goal is to draw an input graph $G$ in the plane so as to minimize the number of crossings between the images of its edges. Despite extensive work, non-trivial approximation algorithms are only known for bounded-degree graphs. Even for this special case, the best current algorithm achieves a $\tilde O(\sqrt n)$-approximation, while the best current negative result is APX-hardness. All current approximation algorithms for the problem build on the same paradigm: compute a set $E'$ of edges (called a \emph{planarizing set}) such that $G\setminus E'$ is planar; compute a planar drawing of $G\setminus E'$; then add the drawings of the edges of $E'$ to the resulting drawing. Unfortunately, there are examples of graphs, in which any implementation of this method must incur $\Omega (\text{OPT}2)$ crossings, where $\text{OPT}$ is the value of the optimal solution. This barrier seems to doom the only known approach to designing approximation algorithms for the problem, and to prevent it from yielding a better than $O(\sqrt n)$-approximation. In this paper we propose a new paradigm that allows us to overcome this barrier. We show an algorithm that, given a bounded-degree graph $G$ and a planarizing set $E'$ of its edges, computes another set $E''$ with $E'\subseteq E''$, such that $|E''|$ is relatively small, and there exists a near-optimal drawing of $G$ in which only edges of $E''$ participate in crossings. This allows us to reduce the Crossing Number problem to \emph{Crossing Number with Rotation System} -- a variant in which the ordering of the edges incident to every vertex is fixed as part of input. We show a randomized algorithm for this new problem, that allows us to obtain an $O(n{1/2-\epsilon})$-approximation for Crossing Number on bounded-degree graphs, for some constant $\epsilon>0$.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube