Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Customizing Trusted AI Accelerators for Efficient Privacy-Preserving Machine Learning (2011.06376v1)

Published 12 Nov 2020 in cs.AR and cs.CR

Abstract: The use of trusted hardware has become a promising solution to enable privacy-preserving machine learning. In particular, users can upload their private data and models to a hardware-enforced trusted execution environment (e.g. an enclave in Intel SGX-enabled CPUs) and run machine learning tasks in it with confidentiality and integrity guaranteed. To improve performance, AI accelerators have been widely employed for modern machine learning tasks. However, how to protect privacy on an AI accelerator remains an open question. To address this question, we propose a solution for efficient privacy-preserving machine learning based on an unmodified trusted CPU and a customized trusted AI accelerator. We carefully leverage cryptographic primitives to establish trust and protect the channel between the CPU and the accelerator. As a case study, we demonstrate our solution based on the open-source versatile tensor accelerator. The result of evaluation shows that the proposed solution provides efficient privacy-preserving machine learning at a small design cost and moderate performance overhead.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.