Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Dirichlet Pruning for Neural Network Compression (2011.05985v3)

Published 10 Nov 2020 in cs.LG and stat.ML

Abstract: We introduce Dirichlet pruning, a novel post-processing technique to transform a large neural network model into a compressed one. Dirichlet pruning is a form of structured pruning that assigns the Dirichlet distribution over each layer's channels in convolutional layers (or neurons in fully-connected layers) and estimates the parameters of the distribution over these units using variational inference. The learned distribution allows us to remove unimportant units, resulting in a compact architecture containing only crucial features for a task at hand. The number of newly introduced Dirichlet parameters is only linear in the number of channels, which allows for rapid training, requiring as little as one epoch to converge. We perform extensive experiments, in particular on larger architectures such as VGG and ResNet (45% and 58% compression rate, respectively) where our method achieves the state-of-the-art compression performance and provides interpretable features as a by-product.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.