Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Empirical Risk Minimization in the Non-interactive Local Model of Differential Privacy (2011.05934v1)

Published 11 Nov 2020 in cs.LG, cs.CR, and stat.ML

Abstract: In this paper, we study the Empirical Risk Minimization (ERM) problem in the non-interactive Local Differential Privacy (LDP) model. Previous research on this problem \citep{smith2017interaction} indicates that the sample complexity, to achieve error $\alpha$, needs to be exponentially depending on the dimensionality $p$ for general loss functions. In this paper, we make two attempts to resolve this issue by investigating conditions on the loss functions that allow us to remove such a limit. In our first attempt, we show that if the loss function is $(\infty, T)$-smooth, by using the Bernstein polynomial approximation we can avoid the exponential dependency in the term of $\alpha$. We then propose player-efficient algorithms with $1$-bit communication complexity and $O(1)$ computation cost for each player. The error bound of these algorithms is asymptotically the same as the original one. With some additional assumptions, we also give an algorithm which is more efficient for the server. In our second attempt, we show that for any $1$-Lipschitz generalized linear convex loss function, there is an $(\epsilon, \delta)$-LDP algorithm whose sample complexity for achieving error $\alpha$ is only linear in the dimensionality $p$. Our results use a polynomial of inner product approximation technique. Finally, motivated by the idea of using polynomial approximation and based on different types of polynomial approximations, we propose (efficient) non-interactive locally differentially private algorithms for learning the set of k-way marginal queries and the set of smooth queries.

Citations (17)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.