Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

On Using Hamiltonian Monte Carlo Sampling for Reinforcement Learning Problems in High-dimension (2011.05927v3)

Published 11 Nov 2020 in cs.LG, cs.SY, eess.SY, and math.OC

Abstract: Value function based reinforcement learning (RL) algorithms, for example, $Q$-learning, learn optimal policies from datasets of actions, rewards, and state transitions. However, when the underlying state transition dynamics are stochastic and evolve on a high-dimensional space, generating independent and identically distributed (IID) data samples for creating these datasets poses a significant challenge due to the intractability of the associated normalizing integral. In these scenarios, Hamiltonian Monte Carlo (HMC) sampling offers a computationally tractable way to generate data for training RL algorithms. In this paper, we introduce a framework, called \textit{Hamiltonian $Q$-Learning}, that demonstrates, both theoretically and empirically, that $Q$ values can be learned from a dataset generated by HMC samples of actions, rewards, and state transitions. Furthermore, to exploit the underlying low-rank structure of the $Q$ function, Hamiltonian $Q$-Learning uses a matrix completion algorithm for reconstructing the updated $Q$ function from $Q$ value updates over a much smaller subset of state-action pairs. Thus, by providing an efficient way to apply $Q$-learning in stochastic, high-dimensional settings, the proposed approach broadens the scope of RL algorithms for real-world applications.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.