Papers
Topics
Authors
Recent
2000 character limit reached

Multi-Frequency Canonical Correlation Analysis (MFCCA): A Generalised Decoding Algorithm for Multi-Frequency SSVEP (2011.05861v2)

Published 27 Oct 2020 in q-bio.NC, cs.HC, and eess.SP

Abstract: Stimulation methods that utilise more than one stimulation frequency have been developed for steady-state visual evoked potential (SSVEP) brain-computer interfaces (BCIs) with the purpose of increasing the number of targets that can be presented simultaneously. However, there is no unified decoding algorithm that can be used without training for each individual users or cases, and applied to a large class of multi-frequency stimulated SSVEP settings. This paper extends the widely used canonical correlation analysis (CCA) decoder to explicitly accommodate multi-frequency SSVEP by exploiting the interactions between the multiple stimulation frequencies. A concept of order, defined as the sum of absolute value of the coefficients in the linear combination of the input frequencies, was introduced to assist the design of Multi-Frequency CCA (MFCCA). The probability distribution of the order in the resulting SSVEP response was then used to improve decoding accuracy. Results show that, compared to the standard CCA formulation, the proposed MFCCA has a 20% improvement in decoding accuracy on average at order 2, while keeping its generality and training-free characteristics.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.