Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Offline Learning of Counterfactual Predictions for Real-World Robotic Reinforcement Learning (2011.05857v2)

Published 11 Nov 2020 in cs.RO and cs.AI

Abstract: We consider real-world reinforcement learning (RL) of robotic manipulation tasks that involve both visuomotor skills and contact-rich skills. We aim to train a policy that maps multimodal sensory observations (vision and force) to a manipulator's joint velocities under practical considerations. We propose to use offline samples to learn a set of general value functions (GVFs) that make counterfactual predictions from the visual inputs. We show that combining the offline learned counterfactual predictions with force feedbacks in online policy learning allows efficient reinforcement learning given only a terminal (success/failure) reward. We argue that the learned counterfactual predictions form a compact and informative representation that enables sample efficiency and provides auxiliary reward signals that guide online explorations towards contact-rich states. Various experiments in simulation and real-world settings were performed for evaluation. Recordings of the real-world robot training can be found via https://sites.google.com/view/realrl.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.