Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Low-resource expressive text-to-speech using data augmentation (2011.05707v2)

Published 11 Nov 2020 in eess.AS, cs.CL, and cs.SD

Abstract: While recent neural text-to-speech (TTS) systems perform remarkably well, they typically require a substantial amount of recordings from the target speaker reading in the desired speaking style. In this work, we present a novel 3-step methodology to circumvent the costly operation of recording large amounts of target data in order to build expressive style voices with as little as 15 minutes of such recordings. First, we augment data via voice conversion by leveraging recordings in the desired speaking style from other speakers. Next, we use that synthetic data on top of the available recordings to train a TTS model. Finally, we fine-tune that model to further increase quality. Our evaluations show that the proposed changes bring significant improvements over non-augmented models across many perceived aspects of synthesised speech. We demonstrate the proposed approach on 2 styles (newscaster and conversational), on various speakers, and on both single and multi-speaker models, illustrating the robustness of our approach.

Citations (48)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.