Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A $(2+\varepsilon)$-approximation algorithm for preemptive weighted flow time on a single machine (2011.05676v1)

Published 11 Nov 2020 in cs.DS

Abstract: Weighted flow time is a fundamental and very well-studied objective function in scheduling. In this paper, we study the setting of a single machine with preemptions. The input consists of a set of jobs, characterized by their processing times, release times, and weights and we want to compute a (possibly preemptive) schedule for them. The objective is to minimize the sum of the weighted flow times of the jobs, where the flow time of a job is the time between its release date and its completion time. It had been a long-standing open problem to find a polynomial time $O(1)$-approximation algorithm for this setting. In a recent break-through result, Batra, Garg, and Kumar (FOCS 2018) found such an algorithm if the input data are polynomially bounded integers, and Feige, Kulkarni, and Li (SODA 2019) presented a black-box reduction to this setting. The resulting approximation ratio is a (not explicitly stated) constant which is at least $10.000$. In this paper we improve this ratio to $2+\varepsilon$. The algorithm by Batra, Garg, and Kumar (FOCS 2018) reduces the problem to Demand MultiCut on trees and solves the resulting instances via LP-rounding and a dynamic program. Instead, we first reduce the problem to a (different) geometric problem while losing only a factor $1+\epsilon$, and then solve its resulting instances up to a factor of $2+\epsilon$ by a dynamic program. In particular, our reduction ensures certain structural properties, thanks to which we do not need LP-rounding methods. We believe that our result makes substantial progress towards finding a PTAS for weighted flow time on a single machine.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.