Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

DLFusion: An Auto-Tuning Compiler for Layer Fusion on Deep Neural Network Accelerator (2011.05630v1)

Published 11 Nov 2020 in cs.DC and cs.PF

Abstract: Many hardware vendors have introduced specialized deep neural networks (DNN) accelerators owing to their superior performance and efficiency. As such, how to generate and optimize the code for the hardware accelerator becomes an important yet less explored problem. In this paper, we perform the compiler-stage optimization study using a novel and representative Cambricon DNN accelerator and demonstrate that the code optimization knobs play an important role in unleashing the potential of hardware computational horsepower. However, even only two studied code optimization knobs, namely the number of cores and layer fusion scheme, present an enormous search space that prevents the naive brute-force search. This work introduces a joint, auto-tuning optimization framework to address this challenge. We first use a set of synthesized DNN layers to study the interplay between the hardware performance and layer characteristics. Based on the insights, we extract the operation count and feature map channel size as each layer's characteristics and derive a joint optimization strategy to decide the performance-optimal core number and fusion scheme. We evaluate the performance of the proposed approach using a set of representative DNN models and show that it achieves the minimal of 3.6x and the maximal of 7.9x performance speedup compared to no optimization baseline. We also show that the achieved speedup is close to the oracle case that is based on a reduced brute-force search but with much less search time.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.