Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Using GANs to Synthesise Minimum Training Data for Deepfake Generation (2011.05421v1)

Published 10 Nov 2020 in cs.CV and cs.LG

Abstract: There are many applications of Generative Adversarial Networks (GANs) in fields like computer vision, natural language processing, speech synthesis, and more. Undoubtedly the most notable results have been in the area of image synthesis and in particular in the generation of deepfake videos. While deepfakes have received much negative media coverage, they can be a useful technology in applications like entertainment, customer relations, or even assistive care. One problem with generating deepfakes is the requirement for a lot of image training data of the subject which is not an issue if the subject is a celebrity for whom many images already exist. If there are only a small number of training images then the quality of the deepfake will be poor. Some media reports have indicated that a good deepfake can be produced with as few as 500 images but in practice, quality deepfakes require many thousands of images, one of the reasons why deepfakes of celebrities and politicians have become so popular. In this study, we exploit the property of a GAN to produce images of an individual with variable facial expressions which we then use to generate a deepfake. We observe that with such variability in facial expressions of synthetic GAN-generated training images and a reduced quantity of them, we can produce a near-realistic deepfake videos.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.