Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Nearly-Linear Time Algorithm for Linear Programs with Small Treewidth: A Multiscale Representation of Robust Central Path (2011.05365v3)

Published 10 Nov 2020 in cs.DS and math.OC

Abstract: Arising from structural graph theory, treewidth has become a focus of study in fixed-parameter tractable algorithms in various communities including combinatorics, integer-linear programming, and numerical analysis. Many NP-hard problems are known to be solvable in $\widetilde{O}(n \cdot 2{O(\mathrm{tw})})$ time, where $\mathrm{tw}$ is the treewidth of the input graph. Analogously, many problems in P should be solvable in $\widetilde{O}(n \cdot \mathrm{tw}{O(1)})$ time; however, due to the lack of appropriate tools, only a few such results are currently known. [Fom+18] conjectured this to hold as broadly as all linear programs; in our paper, we show this is true: Given a linear program of the form $\min_{Ax=b,\ell \leq x\leq u} c{\top} x$, and a width-$\tau$ tree decomposition of a graph $G_A$ related to $A$, we show how to solve it in time $$\widetilde{O}(n \cdot \tau2 \log (1/\varepsilon)),$$ where $n$ is the number of variables and $\varepsilon$ is the relative accuracy. Combined with recent techniques in vertex-capacitated flow [BGS21], this leads to an algorithm with $\widetilde{O}(n{1+o(1)} \cdot \mathrm{tw}2 \log (1/\varepsilon))$ run-time. Besides being the first of its kind, our algorithm has run-time nearly matching the fastest run-time for solving the sub-problem $Ax=b$ (under the assumption that no fast matrix multiplication is used). We obtain these results by combining recent techniques in interior-point methods (IPMs), sketching, and a novel representation of the solution under a multiscale basis similar to the wavelet basis.

Citations (52)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.