Papers
Topics
Authors
Recent
2000 character limit reached

Towards Interpretable Natural Language Understanding with Explanations as Latent Variables (2011.05268v3)

Published 24 Oct 2020 in cs.CL and cs.LG

Abstract: Recently generating natural language explanations has shown very promising results in not only offering interpretable explanations but also providing additional information and supervision for prediction. However, existing approaches usually require a large set of human annotated explanations for training while collecting a large set of explanations is not only time consuming but also expensive. In this paper, we develop a general framework for interpretable natural language understanding that requires only a small set of human annotated explanations for training. Our framework treats natural language explanations as latent variables that model the underlying reasoning process of a neural model. We develop a variational EM framework for optimization where an explanation generation module and an explanation-augmented prediction module are alternatively optimized and mutually enhance each other. Moreover, we further propose an explanation-based self-training method under this framework for semi-supervised learning. It alternates between assigning pseudo-labels to unlabeled data and generating new explanations to iteratively improve each other. Experiments on two natural language understanding tasks demonstrate that our framework can not only make effective predictions in both supervised and semi-supervised settings, but also generate good natural language explanation.

Citations (37)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.