Dimension-agnostic inference using cross U-statistics (2011.05068v7)
Abstract: Classical asymptotic theory for statistical inference usually involves calibrating a statistic by fixing the dimension $d$ while letting the sample size $n$ increase to infinity. Recently, much effort has been dedicated towards understanding how these methods behave in high-dimensional settings, where $d$ and $n$ both increase to infinity together. This often leads to different inference procedures, depending on the assumptions about the dimensionality, leaving the practitioner in a bind: given a dataset with 100 samples in 20 dimensions, should they calibrate by assuming $n \gg d$, or $d/n \approx 0.2$? This paper considers the goal of dimension-agnostic inference; developing methods whose validity does not depend on any assumption on $d$ versus $n$. We introduce an approach that uses variational representations of existing test statistics along with sample splitting and self-normalization to produce a refined test statistic with a Gaussian limiting distribution, regardless of how $d$ scales with $n$. The resulting statistic can be viewed as a careful modification of degenerate U-statistics, dropping diagonal blocks and retaining off-diagonal blocks. We exemplify our technique for some classical problems including one-sample mean and covariance testing, and show that our tests have minimax rate-optimal power against appropriate local alternatives. In most settings, our cross U-statistic matches the high-dimensional power of the corresponding (degenerate) U-statistic up to a $\sqrt{2}$ factor.
- {barticle}[author] \bauthor\bsnmAhmad, \bfnmIbrahim A\binitsI. A. (\byear1993). \btitleModification of some goodness-of-fit statistics to yield asymptotically normal null distributions. \bjournalBiometrika \bvolume80 \bpages466–472. \endbibitem
- {bbook}[author] \bauthor\bsnmAnderson, \bfnmTheodore W\binitsT. W. (\byear2003). \btitleAn Introduction to Multivariate Statistical Analysis. \bpublisherWiley Series in Probability and Statistics. \endbibitem
- {barticle}[author] \bauthor\bsnmBai, \bfnmZhidong D\binitsZ. D. and \bauthor\bsnmSaranadasa, \bfnmHewa\binitsH. (\byear1996). \btitleEffect of high dimension: by an example of a two sample problem. \bjournalStatistica Sinica \bvolume6 \bpages311–329. \endbibitem
- {barticle}[author] \bauthor\bsnmBaraud, \bfnmYannick\binitsY. (\byear2002). \btitleNon-asymptotic minimax rates of testing in signal detection. \bjournalBernoulli \bvolume8 \bpages577–606. \endbibitem
- {barticle}[author] \bauthor\bsnmBentkus, \bfnmVidmantas\binitsV. and \bauthor\bsnmGötze, \bfnmFriedrich\binitsF. (\byear1996). \btitleThe Berry-Esseen bound for Student’s statistic. \bjournalThe Annals of Probability \bvolume24 \bpages491–503. \endbibitem
- {barticle}[author] \bauthor\bsnmBirke, \bfnmMelanie\binitsM. and \bauthor\bsnmDette, \bfnmHolger\binitsH. (\byear2005). \btitleA note on testing the covariance matrix for large dimension. \bjournalStatistics & Probability Letters \bvolume74 \bpages281–289. \endbibitem
- {barticle}[author] \bauthor\bsnmBlanchard, \bfnmGilles\binitsG., \bauthor\bsnmCarpentier, \bfnmAlexandra\binitsA. and \bauthor\bsnmGutzeit, \bfnmMaurilio\binitsM. (\byear2018). \btitleMinimax Euclidean separation rates for testing convex hypotheses in ℝdsuperscriptℝ𝑑\mathbb{R}^{d}blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT. \bjournalElectronic Journal of Statistics \bvolume12 \bpages3713–3735. \endbibitem
- {barticle}[author] \bauthor\bsnmBlom, \bfnmGunnar\binitsG. (\byear1976). \btitleSome properties of incomplete U-statistics. \bjournalBiometrika \bvolume63 \bpages573–580. \endbibitem
- {barticle}[author] \bauthor\bsnmCai, \bfnmT Tony\binitsT. T., \bauthor\bsnmLiu, \bfnmWeidong\binitsW. and \bauthor\bsnmXia, \bfnmYin\binitsY. (\byear2014). \btitleTwo-sample test of high dimensional means under dependence. \bjournalJournal of the Royal Statistical Society: Series B: Statistical Methodology \bvolume76 \bpages349–372. \endbibitem
- {barticle}[author] \bauthor\bsnmCai, \bfnmT Tony\binitsT. T. and \bauthor\bsnmMa, \bfnmZongming\binitsZ. (\byear2013). \btitleOptimal hypothesis testing for high dimensional covariance matrices. \bjournalBernoulli \bvolume19 \bpages2359–2388. \endbibitem
- {barticle}[author] \bauthor\bsnmChen, \bfnmSong Xi\binitsS. X. and \bauthor\bsnmQin, \bfnmYing-Li\binitsY.-L. (\byear2010). \btitleA two-sample test for high-dimensional data with applications to gene-set testing. \bjournalThe Annals of Statistics \bvolume38 \bpages808–835. \endbibitem
- {barticle}[author] \bauthor\bsnmChen, \bfnmSong Xi\binitsS. X., \bauthor\bsnmZhang, \bfnmLi-Xin\binitsL.-X. and \bauthor\bsnmZhong, \bfnmPing-Shou\binitsP.-S. (\byear2010). \btitleTests for high-dimensional covariance matrices. \bjournalJournal of the American Statistical Association \bvolume105 \bpages810–819. \endbibitem
- {barticle}[author] \bauthor\bsnmChernozhukov, \bfnmVictor\binitsV., \bauthor\bsnmChetverikov, \bfnmDenis\binitsD. and \bauthor\bsnmKato, \bfnmKengo\binitsK. (\byear2017). \btitleCentral limit theorems and bootstrap in high dimensions. \bjournalThe Annals of Probability \bvolume45 \bpages2309–2352. \endbibitem
- {binproceedings}[author] \bauthor\bsnmChwialkowski, \bfnmKacper\binitsK., \bauthor\bsnmStrathmann, \bfnmHeiko\binitsH. and \bauthor\bsnmGretton, \bfnmArthur\binitsA. (\byear2016). \btitleA kernel test of goodness of fit. \bseriesProceedings of Machine Learning Research \bvolume48 \bpages2606–2615. \endbibitem
- {barticle}[author] \bauthor\bsnmCox, \bfnmDavid R\binitsD. R. (\byear1975). \btitleA note on data-splitting for the evaluation of significance levels. \bjournalBiometrika \bvolume62 \bpages441–444. \endbibitem
- {barticle}[author] \bauthor\bsnmDeb, \bfnmNabarun\binitsN., \bauthor\bsnmBhattacharya, \bfnmBhaswar B\binitsB. B. and \bauthor\bsnmSen, \bfnmBodhisattva\binitsB. (\byear2021). \btitleEfficiency lower bounds for distribution-free hotelling-type two-sample tests based on optimal transport. \bjournalarXiv preprint arXiv:2104.01986. \endbibitem
- {barticle}[author] \bauthor\bsnmDeb, \bfnmNabarun\binitsN. and \bauthor\bsnmSen, \bfnmBodhisattva\binitsB. (\byear2021). \btitleMultivariate rank-based distribution-free nonparametric testing using measure transportation. \bjournalJournal of the American Statistical Association. \endbibitem
- {barticle}[author] \bauthor\bsnmDecrouez, \bfnmGeoffrey\binitsG. and \bauthor\bsnmHall, \bfnmPeter\binitsP. (\byear2014). \btitleSplit sample methods for constructing confidence intervals for binomial and Poisson parameters. \bjournalJournal of the Royal Statistical Society: Series B: Statistical Methodology \bvolume76 \bpages949–975. \endbibitem
- {barticle}[author] \bauthor\bsnmDonoho, \bfnmDavid L\binitsD. L. and \bauthor\bsnmFeldman, \bfnmMichael J\binitsM. J. (\byear2022). \btitleOptimal Eigenvalue Shrinkage in the Semicircle Limit. \bjournalarXiv preprint arXiv:2210.04488. \endbibitem
- {barticle}[author] \bauthor\bsnmEfron, \bfnmBradley\binitsB. (\byear1969). \btitleStudent’s t-test under symmetry conditions. \bjournalJournal of the American Statistical Association \bvolume64 \bpages1278–1302. \endbibitem
- {barticle}[author] \bauthor\bsnmEl Karoui, \bfnmNoureddine\binitsN. and \bauthor\bsnmPurdom, \bfnmElizabeth\binitsE. (\byear2018). \btitleCan we trust the bootstrap in high-dimensions? The case of linear models. \bjournalThe Journal of Machine Learning Research \bvolume19 \bpages170–235. \endbibitem
- {barticle}[author] \bauthor\bsnmHall, \bfnmPeter\binitsP. (\byear1984). \btitleCentral limit theorem for integrated square error of multivariate nonparametric density estimators. \bjournalJournal of Multivariate Analysis \bvolume14 \bpages1–16. \endbibitem
- {barticle}[author] \bauthor\bsnmHall, \bfnmPeter\binitsP. and \bauthor\bsnmMarron, \bfnmJames Stephen\binitsJ. S. (\byear1987). \btitleEstimation of integrated squared density derivatives. \bjournalStatistics & Probability Letters \bvolume6 \bpages109–115. \endbibitem
- {barticle}[author] \bauthor\bsnmHallin, \bfnmMarc\binitsM. (\byear2017). \btitleOn distribution and quantile functions, ranks and signs in ℝdsuperscriptℝ𝑑\mathbb{R}^{d}blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT. \bjournalavailable at https://ideas.repec.org/p/eca/wpaper/2013-258262.html. \endbibitem
- {barticle}[author] \bauthor\bsnmHao, \bfnmNing\binitsN. and \bauthor\bsnmZhang, \bfnmHao Helen\binitsH. H. (\byear2014). \btitleInteraction screening for ultrahigh-dimensional data. \bjournalJournal of the American Statistical Association \bvolume109 \bpages1285–1301. \endbibitem
- {barticle}[author] \bauthor\bsnmHu, \bfnmJiang\binitsJ. and \bauthor\bsnmBai, \bfnmZhiDong\binitsZ. (\byear2016). \btitleA review of 20 years of naive tests of significance for high-dimensional mean vectors and covariance matrices. \bjournalScience China Mathematics \bvolume59 \bpages2281–2300. \endbibitem
- {barticle}[author] \bauthor\bsnmHuo, \bfnmXiaoming\binitsX. and \bauthor\bsnmSzékely, \bfnmGábor J\binitsG. J. (\byear2016). \btitleFast computing for distance covariance. \bjournalTechnometrics \bvolume58 \bpages435–447. \endbibitem
- {bbook}[author] \bauthor\bsnmIngster, \bfnmYuri\binitsY. and \bauthor\bsnmSuslina, \bfnmIrina A\binitsI. A. (\byear2012). \btitleNonparametric goodness-of-fit testing under Gaussian models \bvolume169. \bpublisherSpringer Science & Business Media. \endbibitem
- {barticle}[author] \bauthor\bsnmIngster, \bfnmYuri Izmailovich\binitsY. I. (\byear1982). \btitleOn the minimax nonparametric detection of signals in white gaussian noise. \bjournalProblemy Peredachi Informatsii \bvolume18 \bpages61–73. \endbibitem
- {barticle}[author] \bauthor\bsnmIngster, \bfnmYu I\binitsY. I. (\byear2000). \btitleAdaptive chi-square tests. \bjournalJournal of Mathematical Sciences \bvolume99 \bpages1110–1119. \endbibitem
- {barticle}[author] \bauthor\bsnmJiang, \bfnmTiefeng\binitsT. and \bauthor\bsnmYang, \bfnmFan\binitsF. (\byear2013). \btitleCentral limit theorems for classical likelihood ratio tests for high-dimensional normal distributions. \bjournalThe Annals of Statistics \bvolume41 \bpages2029–2074. \endbibitem
- {barticle}[author] \bauthor\bsnmKatsevich, \bfnmEugene\binitsE. and \bauthor\bsnmRamdas, \bfnmAaditya\binitsA. (\byear2022). \btitleOn the power of conditional independence testing under model-X. \bjournalElectronic Journal of Statistics \bvolume16 \bpages6348–6394. \endbibitem
- {barticle}[author] \bauthor\bsnmKellner, \bfnmJérémie\binitsJ. and \bauthor\bsnmCelisse, \bfnmAlain\binitsA. (\byear2019). \btitleA one-sample test for normality with kernel methods. \bjournalBernoulli \bvolume25 \bpages1816–1837. \endbibitem
- {barticle}[author] \bauthor\bsnmKim, \bfnmIlmun\binitsI. (\byear2020). \btitleMultinomial goodness-of-fit based on U-statistics: High-dimensional asymptotic and minimax optimality. \bjournalJournal of Statistical Planning and Inference \bvolume205 \bpages74–91. \endbibitem
- {barticle}[author] \bauthor\bsnmKim, \bfnmIlmun\binitsI., \bauthor\bsnmBalakrishnan, \bfnmSivaraman\binitsS. and \bauthor\bsnmWasserman, \bfnmLarry\binitsL. (\byear2020). \btitleRobust multivariate nonparametric tests via projection averaging. \bjournalThe Annals of Statistics \bvolume48 \bpages3417–3441. \endbibitem
- {barticle}[author] \bauthor\bsnmKim, \bfnmIlmun\binitsI., \bauthor\bsnmBalakrishnan, \bfnmSivaraman\binitsS. and \bauthor\bsnmWasserman, \bfnmLarry\binitsL. (\byear2022). \btitleMinimax optimality of permutation tests. \bjournalThe Annals of Statistics \bvolume50 \bpages225–251. \endbibitem
- {bbook}[author] \bauthor\bsnmLee, \bfnmJustin\binitsJ. (\byear1990). \btitleU-statistics: Theory and Practice. \bpublisherCRC Press. \endbibitem
- {bbook}[author] \bauthor\bsnmLehmann, \bfnmErich Leo\binitsE. L. and \bauthor\bsnmD’Abrera, \bfnmHoward J\binitsH. J. (\byear1975). \btitleNonparametrics: statistical methods based on ranks. \bpublisherHolden-day. \endbibitem
- {bbook}[author] \bauthor\bsnmLehmann, \bfnmErich L\binitsE. L. and \bauthor\bsnmRomano, \bfnmJoseph P\binitsJ. P. (\byear2006). \btitleTesting Statistical Hypotheses. \bpublisherSpringer Science & Business Media. \endbibitem
- {barticle}[author] \bauthor\bsnmLi, \bfnmTong\binitsT. and \bauthor\bsnmYuan, \bfnmMing\binitsM. (\byear2019). \btitleOn the Optimality of Gaussian Kernel Based Nonparametric Tests against Smooth Alternatives. \bjournalarXiv preprint arXiv:1909.03302. \endbibitem
- {binproceedings}[author] \bauthor\bsnmLiu, \bfnmQiang\binitsQ., \bauthor\bsnmLee, \bfnmJason\binitsJ. and \bauthor\bsnmJordan, \bfnmMichael\binitsM. (\byear2016). \btitleA kernelized Stein discrepancy for goodness-of-fit tests. \bseriesProceedings of Machine Learning Research \bvolume48 \bpages276–284. \endbibitem
- {barticle}[author] \bauthor\bsnmMakigusa, \bfnmNatsumi\binitsN. and \bauthor\bsnmNaito, \bfnmKanta\binitsK. (\byear2020). \btitleAsymptotic normality of a consistent estimator of maximum mean discrepancy in Hilbert space. \bjournalStatistics & Probability Letters \bvolume156 \bpages108596. \endbibitem
- {barticle}[author] \bauthor\bsnmMakigusa, \bfnmNatsumi\binitsN. and \bauthor\bsnmNaito, \bfnmKanta\binitsK. (\byear2020). \btitleAsymptotics and practical aspects of testing normality with kernel methods. \bjournalJournal of Multivariate Analysis \bvolume180 \bpages104665. \endbibitem
- {barticle}[author] \bauthor\bsnmMentch, \bfnmLucas\binitsL. and \bauthor\bsnmHooker, \bfnmGiles\binitsG. (\byear2016). \btitleQuantifying uncertainty in random forests via confidence intervals and hypothesis tests. \bjournalThe Journal of Machine Learning Research \bvolume17 \bpages841–881. \endbibitem
- {barticle}[author] \bauthor\bsnmNagao, \bfnmHisao\binitsH. (\byear1973). \btitleOn some test criteria for covariance matrix. \bjournalThe Annals of Statistics \bvolume1 \bpages700–709. \endbibitem
- {barticle}[author] \bauthor\bsnmPaindaveine, \bfnmDavy\binitsD. and \bauthor\bsnmVerdebout, \bfnmThomas\binitsT. (\byear2016). \btitleOn high-dimensional sign tests. \bjournalBernoulli \bvolume22 \bpages1745–1769. \endbibitem
- {binproceedings}[author] \bauthor\bsnmPapa, \bfnmGuillaume\binitsG., \bauthor\bsnmClémençon, \bfnmStéphan\binitsS. and \bauthor\bsnmBellet, \bfnmAurélien\binitsA. (\byear2015). \btitleSGD algorithms based on incomplete U-statistics: large-scale minimization of empirical risk. In \bbooktitleAdvances in Neural Information Processing Systems \bpages1027–1035. \endbibitem
- {barticle}[author] \bauthor\bsnmPinelis, \bfnmIosif\binitsI. (\byear2015). \btitleExact bounds on the closeness between the Student and standard normal distributions. \bjournalESAIM: Probability and Statistics \bvolume19 \bpages24–27. \endbibitem
- {barticle}[author] \bauthor\bsnmPortnoy, \bfnmStephen\binitsS. (\byear1984). \btitleAsymptotic behavior of M-estimators of p𝑝pitalic_p regression parameters when p2/nsuperscript𝑝2𝑛p^{2}/nitalic_p start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / italic_n is large. I. Consistency. \bjournalThe Annals of Statistics \bvolume12 \bpages1298–1309. \endbibitem
- {barticle}[author] \bauthor\bsnmPortnoy, \bfnmStephen\binitsS. (\byear1985). \btitleAsymptotic behavior of M-estimators of p𝑝pitalic_p regression parameters when p2/nsuperscript𝑝2𝑛p^{2}/nitalic_p start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / italic_n is large; II. Normal approximation. \bjournalThe Annals of Statistics \bvolume13 \bpages1403–1417. \endbibitem
- {barticle}[author] \bauthor\bsnmRomano, \bfnmJoseph P\binitsJ. P. and \bauthor\bsnmWolf, \bfnmMichael\binitsM. (\byear2005). \btitleExact and approximate stepdown methods for multiple hypothesis testing. \bjournalJournal of the American Statistical Association \bvolume100 \bpages94–108. \endbibitem
- {bbook}[author] \bauthor\bsnmSerfling, \bfnmRobert J\binitsR. J. (\byear2009). \btitleApproximation theorems of mathematical statistics \bvolume162. \bpublisherJohn Wiley & Sons. \endbibitem
- {barticle}[author] \bauthor\bsnmShekhar, \bfnmShubhanshu\binitsS., \bauthor\bsnmKim, \bfnmIlmun\binitsI. and \bauthor\bsnmRamdas, \bfnmAaditya\binitsA. (\byear2022). \btitleA permutation-free kernel two-sample test. \bjournalNeural Information Processing Systems. \endbibitem
- {barticle}[author] \bauthor\bsnmShekhar, \bfnmShubhanshu\binitsS., \bauthor\bsnmKim, \bfnmIlmun\binitsI. and \bauthor\bsnmRamdas, \bfnmAaditya\binitsA. (\byear2022). \btitleA Permutation-Free Kernel Independence Test. \bjournalarXiv preprint arXiv:2212.09108. \endbibitem
- {barticle}[author] \bauthor\bsnmShi, \bfnmHongjian\binitsH., \bauthor\bsnmDrton, \bfnmMathias\binitsM. and \bauthor\bsnmHan, \bfnmFang\binitsF. (\byear2020). \btitleDistribution-free consistent independence tests via center-outward ranks and signs. \bjournalJournal of the American Statistical Association \bpages1–16. \endbibitem
- {barticle}[author] \bauthor\bsnmSrivastava, \bfnmMuni S\binitsM. S. and \bauthor\bsnmDu, \bfnmMeng\binitsM. (\byear2008). \btitleA test for the mean vector with fewer observations than the dimension. \bjournalJournal of Multivariate Analysis \bvolume99 \bpages386–402. \endbibitem
- {barticle}[author] \bauthor\bsnmSur, \bfnmPragya\binitsP. and \bauthor\bsnmCandès, \bfnmEmmanuel J\binitsE. J. (\byear2019). \btitleA modern maximum-likelihood theory for high-dimensional logistic regression. \bjournalProceedings of the National Academy of Sciences \bvolume116 \bpages14516–14525. \endbibitem
- {barticle}[author] \bauthor\bsnmSzékely, \bfnmGábor J\binitsG. J. and \bauthor\bsnmRizzo, \bfnmMaria L\binitsM. L. (\byear2005). \btitleA new test for multivariate normality. \bjournalJournal of Multivariate Analysis \bvolume93 \bpages58–80. \endbibitem
- {bbook}[author] \bauthor\bparticleVan der \bsnmVaart, \bfnmAad W\binitsA. W. (\byear2000). \btitleAsymptotic Statistics \bvolume3. \bpublisherCambridge university press. \endbibitem
- {bbook}[author] \bauthor\bsnmVershynin, \bfnmRoman\binitsR. (\byear2018). \btitleHigh-dimensional probability: An introduction with applications in data science \bvolume47. \bpublisherCambridge university press. \endbibitem
- {barticle}[author] \bauthor\bsnmVovk, \bfnmVladimir\binitsV. and \bauthor\bsnmWang, \bfnmRuodu\binitsR. (\byear2020). \btitleCombining p-values via averaging. \bjournalBiometrika \bvolume107 \bpages791–808. \endbibitem
- {barticle}[author] \bauthor\bsnmWager, \bfnmStefan\binitsS. and \bauthor\bsnmAthey, \bfnmSusan\binitsS. (\byear2018). \btitleEstimation and inference of heterogeneous treatment effects using random forests. \bjournalJournal of the American Statistical Association \bvolume113 \bpages1228–1242. \endbibitem
- {barticle}[author] \bauthor\bsnmWang, \bfnmRui\binitsR. and \bauthor\bsnmXu, \bfnmXingzhong\binitsX. (\byear2019). \btitleA feasible high dimensional randomization test for the mean vector. \bjournalJournal of Statistical Planning and Inference \bvolume199 \bpages160–178. \endbibitem
- {barticle}[author] \bauthor\bsnmWasserman, \bfnmLarry\binitsL., \bauthor\bsnmRamdas, \bfnmAaditya\binitsA. and \bauthor\bsnmBalakrishnan, \bfnmSivaraman\binitsS. (\byear2020). \btitleUniversal Inference. \bjournalProceedings of the National Academy of Sciences \bvolume117 \bpages16880–16890. \endbibitem
- {barticle}[author] \bauthor\bsnmWilks, \bfnmSamuel S\binitsS. S. (\byear1938). \btitleThe large-sample distribution of the likelihood ratio for testing composite hypotheses. \bjournalThe Annals of Mathematical Statistics \bvolume9 \bpages60–62. \endbibitem
- {barticle}[author] \bauthor\bsnmZhang, \bfnmXianyang\binitsX., \bauthor\bsnmYao, \bfnmShun\binitsS. and \bauthor\bsnmShao, \bfnmXiaofeng\binitsX. (\byear2018). \btitleConditional mean and quantile dependence testing in high dimension. \bjournalThe Annals of Statistics \bvolume46 \bpages219–246. \endbibitem
- {barticle}[author] \bauthor\bsnmZhong, \bfnmPing-Shou\binitsP.-S. and \bauthor\bsnmChen, \bfnmSong Xi\binitsS. X. (\byear2011). \btitleTests for high-dimensional regression coefficients with factorial designs. \bjournalJournal of the American Statistical Association \bvolume106 \bpages260–274. \endbibitem
- Ilmun Kim (27 papers)
- Aaditya Ramdas (180 papers)