Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Dimension-agnostic inference using cross U-statistics (2011.05068v7)

Published 10 Nov 2020 in math.ST, stat.ME, stat.ML, and stat.TH

Abstract: Classical asymptotic theory for statistical inference usually involves calibrating a statistic by fixing the dimension $d$ while letting the sample size $n$ increase to infinity. Recently, much effort has been dedicated towards understanding how these methods behave in high-dimensional settings, where $d$ and $n$ both increase to infinity together. This often leads to different inference procedures, depending on the assumptions about the dimensionality, leaving the practitioner in a bind: given a dataset with 100 samples in 20 dimensions, should they calibrate by assuming $n \gg d$, or $d/n \approx 0.2$? This paper considers the goal of dimension-agnostic inference; developing methods whose validity does not depend on any assumption on $d$ versus $n$. We introduce an approach that uses variational representations of existing test statistics along with sample splitting and self-normalization to produce a refined test statistic with a Gaussian limiting distribution, regardless of how $d$ scales with $n$. The resulting statistic can be viewed as a careful modification of degenerate U-statistics, dropping diagonal blocks and retaining off-diagonal blocks. We exemplify our technique for some classical problems including one-sample mean and covariance testing, and show that our tests have minimax rate-optimal power against appropriate local alternatives. In most settings, our cross U-statistic matches the high-dimensional power of the corresponding (degenerate) U-statistic up to a $\sqrt{2}$ factor.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (67)
  1. {barticle}[author] \bauthor\bsnmAhmad, \bfnmIbrahim A\binitsI. A. (\byear1993). \btitleModification of some goodness-of-fit statistics to yield asymptotically normal null distributions. \bjournalBiometrika \bvolume80 \bpages466–472. \endbibitem
  2. {bbook}[author] \bauthor\bsnmAnderson, \bfnmTheodore W\binitsT. W. (\byear2003). \btitleAn Introduction to Multivariate Statistical Analysis. \bpublisherWiley Series in Probability and Statistics. \endbibitem
  3. {barticle}[author] \bauthor\bsnmBai, \bfnmZhidong D\binitsZ. D. and \bauthor\bsnmSaranadasa, \bfnmHewa\binitsH. (\byear1996). \btitleEffect of high dimension: by an example of a two sample problem. \bjournalStatistica Sinica \bvolume6 \bpages311–329. \endbibitem
  4. {barticle}[author] \bauthor\bsnmBaraud, \bfnmYannick\binitsY. (\byear2002). \btitleNon-asymptotic minimax rates of testing in signal detection. \bjournalBernoulli \bvolume8 \bpages577–606. \endbibitem
  5. {barticle}[author] \bauthor\bsnmBentkus, \bfnmVidmantas\binitsV. and \bauthor\bsnmGötze, \bfnmFriedrich\binitsF. (\byear1996). \btitleThe Berry-Esseen bound for Student’s statistic. \bjournalThe Annals of Probability \bvolume24 \bpages491–503. \endbibitem
  6. {barticle}[author] \bauthor\bsnmBirke, \bfnmMelanie\binitsM. and \bauthor\bsnmDette, \bfnmHolger\binitsH. (\byear2005). \btitleA note on testing the covariance matrix for large dimension. \bjournalStatistics & Probability Letters \bvolume74 \bpages281–289. \endbibitem
  7. {barticle}[author] \bauthor\bsnmBlanchard, \bfnmGilles\binitsG., \bauthor\bsnmCarpentier, \bfnmAlexandra\binitsA. and \bauthor\bsnmGutzeit, \bfnmMaurilio\binitsM. (\byear2018). \btitleMinimax Euclidean separation rates for testing convex hypotheses in ℝdsuperscriptℝ𝑑\mathbb{R}^{d}blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT. \bjournalElectronic Journal of Statistics \bvolume12 \bpages3713–3735. \endbibitem
  8. {barticle}[author] \bauthor\bsnmBlom, \bfnmGunnar\binitsG. (\byear1976). \btitleSome properties of incomplete U-statistics. \bjournalBiometrika \bvolume63 \bpages573–580. \endbibitem
  9. {barticle}[author] \bauthor\bsnmCai, \bfnmT Tony\binitsT. T., \bauthor\bsnmLiu, \bfnmWeidong\binitsW. and \bauthor\bsnmXia, \bfnmYin\binitsY. (\byear2014). \btitleTwo-sample test of high dimensional means under dependence. \bjournalJournal of the Royal Statistical Society: Series B: Statistical Methodology \bvolume76 \bpages349–372. \endbibitem
  10. {barticle}[author] \bauthor\bsnmCai, \bfnmT Tony\binitsT. T. and \bauthor\bsnmMa, \bfnmZongming\binitsZ. (\byear2013). \btitleOptimal hypothesis testing for high dimensional covariance matrices. \bjournalBernoulli \bvolume19 \bpages2359–2388. \endbibitem
  11. {barticle}[author] \bauthor\bsnmChen, \bfnmSong Xi\binitsS. X. and \bauthor\bsnmQin, \bfnmYing-Li\binitsY.-L. (\byear2010). \btitleA two-sample test for high-dimensional data with applications to gene-set testing. \bjournalThe Annals of Statistics \bvolume38 \bpages808–835. \endbibitem
  12. {barticle}[author] \bauthor\bsnmChen, \bfnmSong Xi\binitsS. X., \bauthor\bsnmZhang, \bfnmLi-Xin\binitsL.-X. and \bauthor\bsnmZhong, \bfnmPing-Shou\binitsP.-S. (\byear2010). \btitleTests for high-dimensional covariance matrices. \bjournalJournal of the American Statistical Association \bvolume105 \bpages810–819. \endbibitem
  13. {barticle}[author] \bauthor\bsnmChernozhukov, \bfnmVictor\binitsV., \bauthor\bsnmChetverikov, \bfnmDenis\binitsD. and \bauthor\bsnmKato, \bfnmKengo\binitsK. (\byear2017). \btitleCentral limit theorems and bootstrap in high dimensions. \bjournalThe Annals of Probability \bvolume45 \bpages2309–2352. \endbibitem
  14. {binproceedings}[author] \bauthor\bsnmChwialkowski, \bfnmKacper\binitsK., \bauthor\bsnmStrathmann, \bfnmHeiko\binitsH. and \bauthor\bsnmGretton, \bfnmArthur\binitsA. (\byear2016). \btitleA kernel test of goodness of fit. \bseriesProceedings of Machine Learning Research \bvolume48 \bpages2606–2615. \endbibitem
  15. {barticle}[author] \bauthor\bsnmCox, \bfnmDavid R\binitsD. R. (\byear1975). \btitleA note on data-splitting for the evaluation of significance levels. \bjournalBiometrika \bvolume62 \bpages441–444. \endbibitem
  16. {barticle}[author] \bauthor\bsnmDeb, \bfnmNabarun\binitsN., \bauthor\bsnmBhattacharya, \bfnmBhaswar B\binitsB. B. and \bauthor\bsnmSen, \bfnmBodhisattva\binitsB. (\byear2021). \btitleEfficiency lower bounds for distribution-free hotelling-type two-sample tests based on optimal transport. \bjournalarXiv preprint arXiv:2104.01986. \endbibitem
  17. {barticle}[author] \bauthor\bsnmDeb, \bfnmNabarun\binitsN. and \bauthor\bsnmSen, \bfnmBodhisattva\binitsB. (\byear2021). \btitleMultivariate rank-based distribution-free nonparametric testing using measure transportation. \bjournalJournal of the American Statistical Association. \endbibitem
  18. {barticle}[author] \bauthor\bsnmDecrouez, \bfnmGeoffrey\binitsG. and \bauthor\bsnmHall, \bfnmPeter\binitsP. (\byear2014). \btitleSplit sample methods for constructing confidence intervals for binomial and Poisson parameters. \bjournalJournal of the Royal Statistical Society: Series B: Statistical Methodology \bvolume76 \bpages949–975. \endbibitem
  19. {barticle}[author] \bauthor\bsnmDonoho, \bfnmDavid L\binitsD. L. and \bauthor\bsnmFeldman, \bfnmMichael J\binitsM. J. (\byear2022). \btitleOptimal Eigenvalue Shrinkage in the Semicircle Limit. \bjournalarXiv preprint arXiv:2210.04488. \endbibitem
  20. {barticle}[author] \bauthor\bsnmEfron, \bfnmBradley\binitsB. (\byear1969). \btitleStudent’s t-test under symmetry conditions. \bjournalJournal of the American Statistical Association \bvolume64 \bpages1278–1302. \endbibitem
  21. {barticle}[author] \bauthor\bsnmEl Karoui, \bfnmNoureddine\binitsN. and \bauthor\bsnmPurdom, \bfnmElizabeth\binitsE. (\byear2018). \btitleCan we trust the bootstrap in high-dimensions? The case of linear models. \bjournalThe Journal of Machine Learning Research \bvolume19 \bpages170–235. \endbibitem
  22. {barticle}[author] \bauthor\bsnmHall, \bfnmPeter\binitsP. (\byear1984). \btitleCentral limit theorem for integrated square error of multivariate nonparametric density estimators. \bjournalJournal of Multivariate Analysis \bvolume14 \bpages1–16. \endbibitem
  23. {barticle}[author] \bauthor\bsnmHall, \bfnmPeter\binitsP. and \bauthor\bsnmMarron, \bfnmJames Stephen\binitsJ. S. (\byear1987). \btitleEstimation of integrated squared density derivatives. \bjournalStatistics & Probability Letters \bvolume6 \bpages109–115. \endbibitem
  24. {barticle}[author] \bauthor\bsnmHallin, \bfnmMarc\binitsM. (\byear2017). \btitleOn distribution and quantile functions, ranks and signs in ℝdsuperscriptℝ𝑑\mathbb{R}^{d}blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT. \bjournalavailable at https://ideas.repec.org/p/eca/wpaper/2013-258262.html. \endbibitem
  25. {barticle}[author] \bauthor\bsnmHao, \bfnmNing\binitsN. and \bauthor\bsnmZhang, \bfnmHao Helen\binitsH. H. (\byear2014). \btitleInteraction screening for ultrahigh-dimensional data. \bjournalJournal of the American Statistical Association \bvolume109 \bpages1285–1301. \endbibitem
  26. {barticle}[author] \bauthor\bsnmHu, \bfnmJiang\binitsJ. and \bauthor\bsnmBai, \bfnmZhiDong\binitsZ. (\byear2016). \btitleA review of 20 years of naive tests of significance for high-dimensional mean vectors and covariance matrices. \bjournalScience China Mathematics \bvolume59 \bpages2281–2300. \endbibitem
  27. {barticle}[author] \bauthor\bsnmHuo, \bfnmXiaoming\binitsX. and \bauthor\bsnmSzékely, \bfnmGábor J\binitsG. J. (\byear2016). \btitleFast computing for distance covariance. \bjournalTechnometrics \bvolume58 \bpages435–447. \endbibitem
  28. {bbook}[author] \bauthor\bsnmIngster, \bfnmYuri\binitsY. and \bauthor\bsnmSuslina, \bfnmIrina A\binitsI. A. (\byear2012). \btitleNonparametric goodness-of-fit testing under Gaussian models \bvolume169. \bpublisherSpringer Science & Business Media. \endbibitem
  29. {barticle}[author] \bauthor\bsnmIngster, \bfnmYuri Izmailovich\binitsY. I. (\byear1982). \btitleOn the minimax nonparametric detection of signals in white gaussian noise. \bjournalProblemy Peredachi Informatsii \bvolume18 \bpages61–73. \endbibitem
  30. {barticle}[author] \bauthor\bsnmIngster, \bfnmYu I\binitsY. I. (\byear2000). \btitleAdaptive chi-square tests. \bjournalJournal of Mathematical Sciences \bvolume99 \bpages1110–1119. \endbibitem
  31. {barticle}[author] \bauthor\bsnmJiang, \bfnmTiefeng\binitsT. and \bauthor\bsnmYang, \bfnmFan\binitsF. (\byear2013). \btitleCentral limit theorems for classical likelihood ratio tests for high-dimensional normal distributions. \bjournalThe Annals of Statistics \bvolume41 \bpages2029–2074. \endbibitem
  32. {barticle}[author] \bauthor\bsnmKatsevich, \bfnmEugene\binitsE. and \bauthor\bsnmRamdas, \bfnmAaditya\binitsA. (\byear2022). \btitleOn the power of conditional independence testing under model-X. \bjournalElectronic Journal of Statistics \bvolume16 \bpages6348–6394. \endbibitem
  33. {barticle}[author] \bauthor\bsnmKellner, \bfnmJérémie\binitsJ. and \bauthor\bsnmCelisse, \bfnmAlain\binitsA. (\byear2019). \btitleA one-sample test for normality with kernel methods. \bjournalBernoulli \bvolume25 \bpages1816–1837. \endbibitem
  34. {barticle}[author] \bauthor\bsnmKim, \bfnmIlmun\binitsI. (\byear2020). \btitleMultinomial goodness-of-fit based on U-statistics: High-dimensional asymptotic and minimax optimality. \bjournalJournal of Statistical Planning and Inference \bvolume205 \bpages74–91. \endbibitem
  35. {barticle}[author] \bauthor\bsnmKim, \bfnmIlmun\binitsI., \bauthor\bsnmBalakrishnan, \bfnmSivaraman\binitsS. and \bauthor\bsnmWasserman, \bfnmLarry\binitsL. (\byear2020). \btitleRobust multivariate nonparametric tests via projection averaging. \bjournalThe Annals of Statistics \bvolume48 \bpages3417–3441. \endbibitem
  36. {barticle}[author] \bauthor\bsnmKim, \bfnmIlmun\binitsI., \bauthor\bsnmBalakrishnan, \bfnmSivaraman\binitsS. and \bauthor\bsnmWasserman, \bfnmLarry\binitsL. (\byear2022). \btitleMinimax optimality of permutation tests. \bjournalThe Annals of Statistics \bvolume50 \bpages225–251. \endbibitem
  37. {bbook}[author] \bauthor\bsnmLee, \bfnmJustin\binitsJ. (\byear1990). \btitleU-statistics: Theory and Practice. \bpublisherCRC Press. \endbibitem
  38. {bbook}[author] \bauthor\bsnmLehmann, \bfnmErich Leo\binitsE. L. and \bauthor\bsnmD’Abrera, \bfnmHoward J\binitsH. J. (\byear1975). \btitleNonparametrics: statistical methods based on ranks. \bpublisherHolden-day. \endbibitem
  39. {bbook}[author] \bauthor\bsnmLehmann, \bfnmErich L\binitsE. L. and \bauthor\bsnmRomano, \bfnmJoseph P\binitsJ. P. (\byear2006). \btitleTesting Statistical Hypotheses. \bpublisherSpringer Science & Business Media. \endbibitem
  40. {barticle}[author] \bauthor\bsnmLi, \bfnmTong\binitsT. and \bauthor\bsnmYuan, \bfnmMing\binitsM. (\byear2019). \btitleOn the Optimality of Gaussian Kernel Based Nonparametric Tests against Smooth Alternatives. \bjournalarXiv preprint arXiv:1909.03302. \endbibitem
  41. {binproceedings}[author] \bauthor\bsnmLiu, \bfnmQiang\binitsQ., \bauthor\bsnmLee, \bfnmJason\binitsJ. and \bauthor\bsnmJordan, \bfnmMichael\binitsM. (\byear2016). \btitleA kernelized Stein discrepancy for goodness-of-fit tests. \bseriesProceedings of Machine Learning Research \bvolume48 \bpages276–284. \endbibitem
  42. {barticle}[author] \bauthor\bsnmMakigusa, \bfnmNatsumi\binitsN. and \bauthor\bsnmNaito, \bfnmKanta\binitsK. (\byear2020). \btitleAsymptotic normality of a consistent estimator of maximum mean discrepancy in Hilbert space. \bjournalStatistics & Probability Letters \bvolume156 \bpages108596. \endbibitem
  43. {barticle}[author] \bauthor\bsnmMakigusa, \bfnmNatsumi\binitsN. and \bauthor\bsnmNaito, \bfnmKanta\binitsK. (\byear2020). \btitleAsymptotics and practical aspects of testing normality with kernel methods. \bjournalJournal of Multivariate Analysis \bvolume180 \bpages104665. \endbibitem
  44. {barticle}[author] \bauthor\bsnmMentch, \bfnmLucas\binitsL. and \bauthor\bsnmHooker, \bfnmGiles\binitsG. (\byear2016). \btitleQuantifying uncertainty in random forests via confidence intervals and hypothesis tests. \bjournalThe Journal of Machine Learning Research \bvolume17 \bpages841–881. \endbibitem
  45. {barticle}[author] \bauthor\bsnmNagao, \bfnmHisao\binitsH. (\byear1973). \btitleOn some test criteria for covariance matrix. \bjournalThe Annals of Statistics \bvolume1 \bpages700–709. \endbibitem
  46. {barticle}[author] \bauthor\bsnmPaindaveine, \bfnmDavy\binitsD. and \bauthor\bsnmVerdebout, \bfnmThomas\binitsT. (\byear2016). \btitleOn high-dimensional sign tests. \bjournalBernoulli \bvolume22 \bpages1745–1769. \endbibitem
  47. {binproceedings}[author] \bauthor\bsnmPapa, \bfnmGuillaume\binitsG., \bauthor\bsnmClémençon, \bfnmStéphan\binitsS. and \bauthor\bsnmBellet, \bfnmAurélien\binitsA. (\byear2015). \btitleSGD algorithms based on incomplete U-statistics: large-scale minimization of empirical risk. In \bbooktitleAdvances in Neural Information Processing Systems \bpages1027–1035. \endbibitem
  48. {barticle}[author] \bauthor\bsnmPinelis, \bfnmIosif\binitsI. (\byear2015). \btitleExact bounds on the closeness between the Student and standard normal distributions. \bjournalESAIM: Probability and Statistics \bvolume19 \bpages24–27. \endbibitem
  49. {barticle}[author] \bauthor\bsnmPortnoy, \bfnmStephen\binitsS. (\byear1984). \btitleAsymptotic behavior of M-estimators of p𝑝pitalic_p regression parameters when p2/nsuperscript𝑝2𝑛p^{2}/nitalic_p start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / italic_n is large. I. Consistency. \bjournalThe Annals of Statistics \bvolume12 \bpages1298–1309. \endbibitem
  50. {barticle}[author] \bauthor\bsnmPortnoy, \bfnmStephen\binitsS. (\byear1985). \btitleAsymptotic behavior of M-estimators of p𝑝pitalic_p regression parameters when p2/nsuperscript𝑝2𝑛p^{2}/nitalic_p start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / italic_n is large; II. Normal approximation. \bjournalThe Annals of Statistics \bvolume13 \bpages1403–1417. \endbibitem
  51. {barticle}[author] \bauthor\bsnmRomano, \bfnmJoseph P\binitsJ. P. and \bauthor\bsnmWolf, \bfnmMichael\binitsM. (\byear2005). \btitleExact and approximate stepdown methods for multiple hypothesis testing. \bjournalJournal of the American Statistical Association \bvolume100 \bpages94–108. \endbibitem
  52. {bbook}[author] \bauthor\bsnmSerfling, \bfnmRobert J\binitsR. J. (\byear2009). \btitleApproximation theorems of mathematical statistics \bvolume162. \bpublisherJohn Wiley & Sons. \endbibitem
  53. {barticle}[author] \bauthor\bsnmShekhar, \bfnmShubhanshu\binitsS., \bauthor\bsnmKim, \bfnmIlmun\binitsI. and \bauthor\bsnmRamdas, \bfnmAaditya\binitsA. (\byear2022). \btitleA permutation-free kernel two-sample test. \bjournalNeural Information Processing Systems. \endbibitem
  54. {barticle}[author] \bauthor\bsnmShekhar, \bfnmShubhanshu\binitsS., \bauthor\bsnmKim, \bfnmIlmun\binitsI. and \bauthor\bsnmRamdas, \bfnmAaditya\binitsA. (\byear2022). \btitleA Permutation-Free Kernel Independence Test. \bjournalarXiv preprint arXiv:2212.09108. \endbibitem
  55. {barticle}[author] \bauthor\bsnmShi, \bfnmHongjian\binitsH., \bauthor\bsnmDrton, \bfnmMathias\binitsM. and \bauthor\bsnmHan, \bfnmFang\binitsF. (\byear2020). \btitleDistribution-free consistent independence tests via center-outward ranks and signs. \bjournalJournal of the American Statistical Association \bpages1–16. \endbibitem
  56. {barticle}[author] \bauthor\bsnmSrivastava, \bfnmMuni S\binitsM. S. and \bauthor\bsnmDu, \bfnmMeng\binitsM. (\byear2008). \btitleA test for the mean vector with fewer observations than the dimension. \bjournalJournal of Multivariate Analysis \bvolume99 \bpages386–402. \endbibitem
  57. {barticle}[author] \bauthor\bsnmSur, \bfnmPragya\binitsP. and \bauthor\bsnmCandès, \bfnmEmmanuel J\binitsE. J. (\byear2019). \btitleA modern maximum-likelihood theory for high-dimensional logistic regression. \bjournalProceedings of the National Academy of Sciences \bvolume116 \bpages14516–14525. \endbibitem
  58. {barticle}[author] \bauthor\bsnmSzékely, \bfnmGábor J\binitsG. J. and \bauthor\bsnmRizzo, \bfnmMaria L\binitsM. L. (\byear2005). \btitleA new test for multivariate normality. \bjournalJournal of Multivariate Analysis \bvolume93 \bpages58–80. \endbibitem
  59. {bbook}[author] \bauthor\bparticleVan der \bsnmVaart, \bfnmAad W\binitsA. W. (\byear2000). \btitleAsymptotic Statistics \bvolume3. \bpublisherCambridge university press. \endbibitem
  60. {bbook}[author] \bauthor\bsnmVershynin, \bfnmRoman\binitsR. (\byear2018). \btitleHigh-dimensional probability: An introduction with applications in data science \bvolume47. \bpublisherCambridge university press. \endbibitem
  61. {barticle}[author] \bauthor\bsnmVovk, \bfnmVladimir\binitsV. and \bauthor\bsnmWang, \bfnmRuodu\binitsR. (\byear2020). \btitleCombining p-values via averaging. \bjournalBiometrika \bvolume107 \bpages791–808. \endbibitem
  62. {barticle}[author] \bauthor\bsnmWager, \bfnmStefan\binitsS. and \bauthor\bsnmAthey, \bfnmSusan\binitsS. (\byear2018). \btitleEstimation and inference of heterogeneous treatment effects using random forests. \bjournalJournal of the American Statistical Association \bvolume113 \bpages1228–1242. \endbibitem
  63. {barticle}[author] \bauthor\bsnmWang, \bfnmRui\binitsR. and \bauthor\bsnmXu, \bfnmXingzhong\binitsX. (\byear2019). \btitleA feasible high dimensional randomization test for the mean vector. \bjournalJournal of Statistical Planning and Inference \bvolume199 \bpages160–178. \endbibitem
  64. {barticle}[author] \bauthor\bsnmWasserman, \bfnmLarry\binitsL., \bauthor\bsnmRamdas, \bfnmAaditya\binitsA. and \bauthor\bsnmBalakrishnan, \bfnmSivaraman\binitsS. (\byear2020). \btitleUniversal Inference. \bjournalProceedings of the National Academy of Sciences \bvolume117 \bpages16880–16890. \endbibitem
  65. {barticle}[author] \bauthor\bsnmWilks, \bfnmSamuel S\binitsS. S. (\byear1938). \btitleThe large-sample distribution of the likelihood ratio for testing composite hypotheses. \bjournalThe Annals of Mathematical Statistics \bvolume9 \bpages60–62. \endbibitem
  66. {barticle}[author] \bauthor\bsnmZhang, \bfnmXianyang\binitsX., \bauthor\bsnmYao, \bfnmShun\binitsS. and \bauthor\bsnmShao, \bfnmXiaofeng\binitsX. (\byear2018). \btitleConditional mean and quantile dependence testing in high dimension. \bjournalThe Annals of Statistics \bvolume46 \bpages219–246. \endbibitem
  67. {barticle}[author] \bauthor\bsnmZhong, \bfnmPing-Shou\binitsP.-S. and \bauthor\bsnmChen, \bfnmSong Xi\binitsS. X. (\byear2011). \btitleTests for high-dimensional regression coefficients with factorial designs. \bjournalJournal of the American Statistical Association \bvolume106 \bpages260–274. \endbibitem
Citations (11)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.