Dimension-agnostic inference using cross U-statistics (2011.05068v7)
Abstract: Classical asymptotic theory for statistical inference usually involves calibrating a statistic by fixing the dimension $d$ while letting the sample size $n$ increase to infinity. Recently, much effort has been dedicated towards understanding how these methods behave in high-dimensional settings, where $d$ and $n$ both increase to infinity together. This often leads to different inference procedures, depending on the assumptions about the dimensionality, leaving the practitioner in a bind: given a dataset with 100 samples in 20 dimensions, should they calibrate by assuming $n \gg d$, or $d/n \approx 0.2$? This paper considers the goal of dimension-agnostic inference; developing methods whose validity does not depend on any assumption on $d$ versus $n$. We introduce an approach that uses variational representations of existing test statistics along with sample splitting and self-normalization to produce a refined test statistic with a Gaussian limiting distribution, regardless of how $d$ scales with $n$. The resulting statistic can be viewed as a careful modification of degenerate U-statistics, dropping diagonal blocks and retaining off-diagonal blocks. We exemplify our technique for some classical problems including one-sample mean and covariance testing, and show that our tests have minimax rate-optimal power against appropriate local alternatives. In most settings, our cross U-statistic matches the high-dimensional power of the corresponding (degenerate) U-statistic up to a $\sqrt{2}$ factor.
- {barticle}[author] \bauthor\bsnmAhmad, \bfnmIbrahim A\binitsI. A. (\byear1993). \btitleModification of some goodness-of-fit statistics to yield asymptotically normal null distributions. \bjournalBiometrika \bvolume80 \bpages466–472. \endbibitem
- {bbook}[author] \bauthor\bsnmAnderson, \bfnmTheodore W\binitsT. W. (\byear2003). \btitleAn Introduction to Multivariate Statistical Analysis. \bpublisherWiley Series in Probability and Statistics. \endbibitem
- {barticle}[author] \bauthor\bsnmBai, \bfnmZhidong D\binitsZ. D. and \bauthor\bsnmSaranadasa, \bfnmHewa\binitsH. (\byear1996). \btitleEffect of high dimension: by an example of a two sample problem. \bjournalStatistica Sinica \bvolume6 \bpages311–329. \endbibitem
- {barticle}[author] \bauthor\bsnmBaraud, \bfnmYannick\binitsY. (\byear2002). \btitleNon-asymptotic minimax rates of testing in signal detection. \bjournalBernoulli \bvolume8 \bpages577–606. \endbibitem
- {barticle}[author] \bauthor\bsnmBentkus, \bfnmVidmantas\binitsV. and \bauthor\bsnmGötze, \bfnmFriedrich\binitsF. (\byear1996). \btitleThe Berry-Esseen bound for Student’s statistic. \bjournalThe Annals of Probability \bvolume24 \bpages491–503. \endbibitem
- {barticle}[author] \bauthor\bsnmBirke, \bfnmMelanie\binitsM. and \bauthor\bsnmDette, \bfnmHolger\binitsH. (\byear2005). \btitleA note on testing the covariance matrix for large dimension. \bjournalStatistics & Probability Letters \bvolume74 \bpages281–289. \endbibitem
- {barticle}[author] \bauthor\bsnmBlanchard, \bfnmGilles\binitsG., \bauthor\bsnmCarpentier, \bfnmAlexandra\binitsA. and \bauthor\bsnmGutzeit, \bfnmMaurilio\binitsM. (\byear2018). \btitleMinimax Euclidean separation rates for testing convex hypotheses in ℝdsuperscriptℝ𝑑\mathbb{R}^{d}blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT. \bjournalElectronic Journal of Statistics \bvolume12 \bpages3713–3735. \endbibitem
- {barticle}[author] \bauthor\bsnmBlom, \bfnmGunnar\binitsG. (\byear1976). \btitleSome properties of incomplete U-statistics. \bjournalBiometrika \bvolume63 \bpages573–580. \endbibitem
- {barticle}[author] \bauthor\bsnmCai, \bfnmT Tony\binitsT. T., \bauthor\bsnmLiu, \bfnmWeidong\binitsW. and \bauthor\bsnmXia, \bfnmYin\binitsY. (\byear2014). \btitleTwo-sample test of high dimensional means under dependence. \bjournalJournal of the Royal Statistical Society: Series B: Statistical Methodology \bvolume76 \bpages349–372. \endbibitem
- {barticle}[author] \bauthor\bsnmCai, \bfnmT Tony\binitsT. T. and \bauthor\bsnmMa, \bfnmZongming\binitsZ. (\byear2013). \btitleOptimal hypothesis testing for high dimensional covariance matrices. \bjournalBernoulli \bvolume19 \bpages2359–2388. \endbibitem
- {barticle}[author] \bauthor\bsnmChen, \bfnmSong Xi\binitsS. X. and \bauthor\bsnmQin, \bfnmYing-Li\binitsY.-L. (\byear2010). \btitleA two-sample test for high-dimensional data with applications to gene-set testing. \bjournalThe Annals of Statistics \bvolume38 \bpages808–835. \endbibitem
- {barticle}[author] \bauthor\bsnmChen, \bfnmSong Xi\binitsS. X., \bauthor\bsnmZhang, \bfnmLi-Xin\binitsL.-X. and \bauthor\bsnmZhong, \bfnmPing-Shou\binitsP.-S. (\byear2010). \btitleTests for high-dimensional covariance matrices. \bjournalJournal of the American Statistical Association \bvolume105 \bpages810–819. \endbibitem
- {barticle}[author] \bauthor\bsnmChernozhukov, \bfnmVictor\binitsV., \bauthor\bsnmChetverikov, \bfnmDenis\binitsD. and \bauthor\bsnmKato, \bfnmKengo\binitsK. (\byear2017). \btitleCentral limit theorems and bootstrap in high dimensions. \bjournalThe Annals of Probability \bvolume45 \bpages2309–2352. \endbibitem
- {binproceedings}[author] \bauthor\bsnmChwialkowski, \bfnmKacper\binitsK., \bauthor\bsnmStrathmann, \bfnmHeiko\binitsH. and \bauthor\bsnmGretton, \bfnmArthur\binitsA. (\byear2016). \btitleA kernel test of goodness of fit. \bseriesProceedings of Machine Learning Research \bvolume48 \bpages2606–2615. \endbibitem
- {barticle}[author] \bauthor\bsnmCox, \bfnmDavid R\binitsD. R. (\byear1975). \btitleA note on data-splitting for the evaluation of significance levels. \bjournalBiometrika \bvolume62 \bpages441–444. \endbibitem
- {barticle}[author] \bauthor\bsnmDeb, \bfnmNabarun\binitsN., \bauthor\bsnmBhattacharya, \bfnmBhaswar B\binitsB. B. and \bauthor\bsnmSen, \bfnmBodhisattva\binitsB. (\byear2021). \btitleEfficiency lower bounds for distribution-free hotelling-type two-sample tests based on optimal transport. \bjournalarXiv preprint arXiv:2104.01986. \endbibitem
- {barticle}[author] \bauthor\bsnmDeb, \bfnmNabarun\binitsN. and \bauthor\bsnmSen, \bfnmBodhisattva\binitsB. (\byear2021). \btitleMultivariate rank-based distribution-free nonparametric testing using measure transportation. \bjournalJournal of the American Statistical Association. \endbibitem
- {barticle}[author] \bauthor\bsnmDecrouez, \bfnmGeoffrey\binitsG. and \bauthor\bsnmHall, \bfnmPeter\binitsP. (\byear2014). \btitleSplit sample methods for constructing confidence intervals for binomial and Poisson parameters. \bjournalJournal of the Royal Statistical Society: Series B: Statistical Methodology \bvolume76 \bpages949–975. \endbibitem
- {barticle}[author] \bauthor\bsnmDonoho, \bfnmDavid L\binitsD. L. and \bauthor\bsnmFeldman, \bfnmMichael J\binitsM. J. (\byear2022). \btitleOptimal Eigenvalue Shrinkage in the Semicircle Limit. \bjournalarXiv preprint arXiv:2210.04488. \endbibitem
- {barticle}[author] \bauthor\bsnmEfron, \bfnmBradley\binitsB. (\byear1969). \btitleStudent’s t-test under symmetry conditions. \bjournalJournal of the American Statistical Association \bvolume64 \bpages1278–1302. \endbibitem
- {barticle}[author] \bauthor\bsnmEl Karoui, \bfnmNoureddine\binitsN. and \bauthor\bsnmPurdom, \bfnmElizabeth\binitsE. (\byear2018). \btitleCan we trust the bootstrap in high-dimensions? The case of linear models. \bjournalThe Journal of Machine Learning Research \bvolume19 \bpages170–235. \endbibitem
- {barticle}[author] \bauthor\bsnmHall, \bfnmPeter\binitsP. (\byear1984). \btitleCentral limit theorem for integrated square error of multivariate nonparametric density estimators. \bjournalJournal of Multivariate Analysis \bvolume14 \bpages1–16. \endbibitem
- {barticle}[author] \bauthor\bsnmHall, \bfnmPeter\binitsP. and \bauthor\bsnmMarron, \bfnmJames Stephen\binitsJ. S. (\byear1987). \btitleEstimation of integrated squared density derivatives. \bjournalStatistics & Probability Letters \bvolume6 \bpages109–115. \endbibitem
- {barticle}[author] \bauthor\bsnmHallin, \bfnmMarc\binitsM. (\byear2017). \btitleOn distribution and quantile functions, ranks and signs in ℝdsuperscriptℝ𝑑\mathbb{R}^{d}blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT. \bjournalavailable at https://ideas.repec.org/p/eca/wpaper/2013-258262.html. \endbibitem
- {barticle}[author] \bauthor\bsnmHao, \bfnmNing\binitsN. and \bauthor\bsnmZhang, \bfnmHao Helen\binitsH. H. (\byear2014). \btitleInteraction screening for ultrahigh-dimensional data. \bjournalJournal of the American Statistical Association \bvolume109 \bpages1285–1301. \endbibitem
- {barticle}[author] \bauthor\bsnmHu, \bfnmJiang\binitsJ. and \bauthor\bsnmBai, \bfnmZhiDong\binitsZ. (\byear2016). \btitleA review of 20 years of naive tests of significance for high-dimensional mean vectors and covariance matrices. \bjournalScience China Mathematics \bvolume59 \bpages2281–2300. \endbibitem
- {barticle}[author] \bauthor\bsnmHuo, \bfnmXiaoming\binitsX. and \bauthor\bsnmSzékely, \bfnmGábor J\binitsG. J. (\byear2016). \btitleFast computing for distance covariance. \bjournalTechnometrics \bvolume58 \bpages435–447. \endbibitem
- {bbook}[author] \bauthor\bsnmIngster, \bfnmYuri\binitsY. and \bauthor\bsnmSuslina, \bfnmIrina A\binitsI. A. (\byear2012). \btitleNonparametric goodness-of-fit testing under Gaussian models \bvolume169. \bpublisherSpringer Science & Business Media. \endbibitem
- {barticle}[author] \bauthor\bsnmIngster, \bfnmYuri Izmailovich\binitsY. I. (\byear1982). \btitleOn the minimax nonparametric detection of signals in white gaussian noise. \bjournalProblemy Peredachi Informatsii \bvolume18 \bpages61–73. \endbibitem
- {barticle}[author] \bauthor\bsnmIngster, \bfnmYu I\binitsY. I. (\byear2000). \btitleAdaptive chi-square tests. \bjournalJournal of Mathematical Sciences \bvolume99 \bpages1110–1119. \endbibitem
- {barticle}[author] \bauthor\bsnmJiang, \bfnmTiefeng\binitsT. and \bauthor\bsnmYang, \bfnmFan\binitsF. (\byear2013). \btitleCentral limit theorems for classical likelihood ratio tests for high-dimensional normal distributions. \bjournalThe Annals of Statistics \bvolume41 \bpages2029–2074. \endbibitem
- {barticle}[author] \bauthor\bsnmKatsevich, \bfnmEugene\binitsE. and \bauthor\bsnmRamdas, \bfnmAaditya\binitsA. (\byear2022). \btitleOn the power of conditional independence testing under model-X. \bjournalElectronic Journal of Statistics \bvolume16 \bpages6348–6394. \endbibitem
- {barticle}[author] \bauthor\bsnmKellner, \bfnmJérémie\binitsJ. and \bauthor\bsnmCelisse, \bfnmAlain\binitsA. (\byear2019). \btitleA one-sample test for normality with kernel methods. \bjournalBernoulli \bvolume25 \bpages1816–1837. \endbibitem
- {barticle}[author] \bauthor\bsnmKim, \bfnmIlmun\binitsI. (\byear2020). \btitleMultinomial goodness-of-fit based on U-statistics: High-dimensional asymptotic and minimax optimality. \bjournalJournal of Statistical Planning and Inference \bvolume205 \bpages74–91. \endbibitem
- {barticle}[author] \bauthor\bsnmKim, \bfnmIlmun\binitsI., \bauthor\bsnmBalakrishnan, \bfnmSivaraman\binitsS. and \bauthor\bsnmWasserman, \bfnmLarry\binitsL. (\byear2020). \btitleRobust multivariate nonparametric tests via projection averaging. \bjournalThe Annals of Statistics \bvolume48 \bpages3417–3441. \endbibitem
- {barticle}[author] \bauthor\bsnmKim, \bfnmIlmun\binitsI., \bauthor\bsnmBalakrishnan, \bfnmSivaraman\binitsS. and \bauthor\bsnmWasserman, \bfnmLarry\binitsL. (\byear2022). \btitleMinimax optimality of permutation tests. \bjournalThe Annals of Statistics \bvolume50 \bpages225–251. \endbibitem
- {bbook}[author] \bauthor\bsnmLee, \bfnmJustin\binitsJ. (\byear1990). \btitleU-statistics: Theory and Practice. \bpublisherCRC Press. \endbibitem
- {bbook}[author] \bauthor\bsnmLehmann, \bfnmErich Leo\binitsE. L. and \bauthor\bsnmD’Abrera, \bfnmHoward J\binitsH. J. (\byear1975). \btitleNonparametrics: statistical methods based on ranks. \bpublisherHolden-day. \endbibitem
- {bbook}[author] \bauthor\bsnmLehmann, \bfnmErich L\binitsE. L. and \bauthor\bsnmRomano, \bfnmJoseph P\binitsJ. P. (\byear2006). \btitleTesting Statistical Hypotheses. \bpublisherSpringer Science & Business Media. \endbibitem
- {barticle}[author] \bauthor\bsnmLi, \bfnmTong\binitsT. and \bauthor\bsnmYuan, \bfnmMing\binitsM. (\byear2019). \btitleOn the Optimality of Gaussian Kernel Based Nonparametric Tests against Smooth Alternatives. \bjournalarXiv preprint arXiv:1909.03302. \endbibitem
- {binproceedings}[author] \bauthor\bsnmLiu, \bfnmQiang\binitsQ., \bauthor\bsnmLee, \bfnmJason\binitsJ. and \bauthor\bsnmJordan, \bfnmMichael\binitsM. (\byear2016). \btitleA kernelized Stein discrepancy for goodness-of-fit tests. \bseriesProceedings of Machine Learning Research \bvolume48 \bpages276–284. \endbibitem
- {barticle}[author] \bauthor\bsnmMakigusa, \bfnmNatsumi\binitsN. and \bauthor\bsnmNaito, \bfnmKanta\binitsK. (\byear2020). \btitleAsymptotic normality of a consistent estimator of maximum mean discrepancy in Hilbert space. \bjournalStatistics & Probability Letters \bvolume156 \bpages108596. \endbibitem
- {barticle}[author] \bauthor\bsnmMakigusa, \bfnmNatsumi\binitsN. and \bauthor\bsnmNaito, \bfnmKanta\binitsK. (\byear2020). \btitleAsymptotics and practical aspects of testing normality with kernel methods. \bjournalJournal of Multivariate Analysis \bvolume180 \bpages104665. \endbibitem
- {barticle}[author] \bauthor\bsnmMentch, \bfnmLucas\binitsL. and \bauthor\bsnmHooker, \bfnmGiles\binitsG. (\byear2016). \btitleQuantifying uncertainty in random forests via confidence intervals and hypothesis tests. \bjournalThe Journal of Machine Learning Research \bvolume17 \bpages841–881. \endbibitem
- {barticle}[author] \bauthor\bsnmNagao, \bfnmHisao\binitsH. (\byear1973). \btitleOn some test criteria for covariance matrix. \bjournalThe Annals of Statistics \bvolume1 \bpages700–709. \endbibitem
- {barticle}[author] \bauthor\bsnmPaindaveine, \bfnmDavy\binitsD. and \bauthor\bsnmVerdebout, \bfnmThomas\binitsT. (\byear2016). \btitleOn high-dimensional sign tests. \bjournalBernoulli \bvolume22 \bpages1745–1769. \endbibitem
- {binproceedings}[author] \bauthor\bsnmPapa, \bfnmGuillaume\binitsG., \bauthor\bsnmClémençon, \bfnmStéphan\binitsS. and \bauthor\bsnmBellet, \bfnmAurélien\binitsA. (\byear2015). \btitleSGD algorithms based on incomplete U-statistics: large-scale minimization of empirical risk. In \bbooktitleAdvances in Neural Information Processing Systems \bpages1027–1035. \endbibitem
- {barticle}[author] \bauthor\bsnmPinelis, \bfnmIosif\binitsI. (\byear2015). \btitleExact bounds on the closeness between the Student and standard normal distributions. \bjournalESAIM: Probability and Statistics \bvolume19 \bpages24–27. \endbibitem
- {barticle}[author] \bauthor\bsnmPortnoy, \bfnmStephen\binitsS. (\byear1984). \btitleAsymptotic behavior of M-estimators of p𝑝pitalic_p regression parameters when p2/nsuperscript𝑝2𝑛p^{2}/nitalic_p start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / italic_n is large. I. Consistency. \bjournalThe Annals of Statistics \bvolume12 \bpages1298–1309. \endbibitem
- {barticle}[author] \bauthor\bsnmPortnoy, \bfnmStephen\binitsS. (\byear1985). \btitleAsymptotic behavior of M-estimators of p𝑝pitalic_p regression parameters when p2/nsuperscript𝑝2𝑛p^{2}/nitalic_p start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / italic_n is large; II. Normal approximation. \bjournalThe Annals of Statistics \bvolume13 \bpages1403–1417. \endbibitem
- {barticle}[author] \bauthor\bsnmRomano, \bfnmJoseph P\binitsJ. P. and \bauthor\bsnmWolf, \bfnmMichael\binitsM. (\byear2005). \btitleExact and approximate stepdown methods for multiple hypothesis testing. \bjournalJournal of the American Statistical Association \bvolume100 \bpages94–108. \endbibitem
- {bbook}[author] \bauthor\bsnmSerfling, \bfnmRobert J\binitsR. J. (\byear2009). \btitleApproximation theorems of mathematical statistics \bvolume162. \bpublisherJohn Wiley & Sons. \endbibitem
- {barticle}[author] \bauthor\bsnmShekhar, \bfnmShubhanshu\binitsS., \bauthor\bsnmKim, \bfnmIlmun\binitsI. and \bauthor\bsnmRamdas, \bfnmAaditya\binitsA. (\byear2022). \btitleA permutation-free kernel two-sample test. \bjournalNeural Information Processing Systems. \endbibitem
- {barticle}[author] \bauthor\bsnmShekhar, \bfnmShubhanshu\binitsS., \bauthor\bsnmKim, \bfnmIlmun\binitsI. and \bauthor\bsnmRamdas, \bfnmAaditya\binitsA. (\byear2022). \btitleA Permutation-Free Kernel Independence Test. \bjournalarXiv preprint arXiv:2212.09108. \endbibitem
- {barticle}[author] \bauthor\bsnmShi, \bfnmHongjian\binitsH., \bauthor\bsnmDrton, \bfnmMathias\binitsM. and \bauthor\bsnmHan, \bfnmFang\binitsF. (\byear2020). \btitleDistribution-free consistent independence tests via center-outward ranks and signs. \bjournalJournal of the American Statistical Association \bpages1–16. \endbibitem
- {barticle}[author] \bauthor\bsnmSrivastava, \bfnmMuni S\binitsM. S. and \bauthor\bsnmDu, \bfnmMeng\binitsM. (\byear2008). \btitleA test for the mean vector with fewer observations than the dimension. \bjournalJournal of Multivariate Analysis \bvolume99 \bpages386–402. \endbibitem
- {barticle}[author] \bauthor\bsnmSur, \bfnmPragya\binitsP. and \bauthor\bsnmCandès, \bfnmEmmanuel J\binitsE. J. (\byear2019). \btitleA modern maximum-likelihood theory for high-dimensional logistic regression. \bjournalProceedings of the National Academy of Sciences \bvolume116 \bpages14516–14525. \endbibitem
- {barticle}[author] \bauthor\bsnmSzékely, \bfnmGábor J\binitsG. J. and \bauthor\bsnmRizzo, \bfnmMaria L\binitsM. L. (\byear2005). \btitleA new test for multivariate normality. \bjournalJournal of Multivariate Analysis \bvolume93 \bpages58–80. \endbibitem
- {bbook}[author] \bauthor\bparticleVan der \bsnmVaart, \bfnmAad W\binitsA. W. (\byear2000). \btitleAsymptotic Statistics \bvolume3. \bpublisherCambridge university press. \endbibitem
- {bbook}[author] \bauthor\bsnmVershynin, \bfnmRoman\binitsR. (\byear2018). \btitleHigh-dimensional probability: An introduction with applications in data science \bvolume47. \bpublisherCambridge university press. \endbibitem
- {barticle}[author] \bauthor\bsnmVovk, \bfnmVladimir\binitsV. and \bauthor\bsnmWang, \bfnmRuodu\binitsR. (\byear2020). \btitleCombining p-values via averaging. \bjournalBiometrika \bvolume107 \bpages791–808. \endbibitem
- {barticle}[author] \bauthor\bsnmWager, \bfnmStefan\binitsS. and \bauthor\bsnmAthey, \bfnmSusan\binitsS. (\byear2018). \btitleEstimation and inference of heterogeneous treatment effects using random forests. \bjournalJournal of the American Statistical Association \bvolume113 \bpages1228–1242. \endbibitem
- {barticle}[author] \bauthor\bsnmWang, \bfnmRui\binitsR. and \bauthor\bsnmXu, \bfnmXingzhong\binitsX. (\byear2019). \btitleA feasible high dimensional randomization test for the mean vector. \bjournalJournal of Statistical Planning and Inference \bvolume199 \bpages160–178. \endbibitem
- {barticle}[author] \bauthor\bsnmWasserman, \bfnmLarry\binitsL., \bauthor\bsnmRamdas, \bfnmAaditya\binitsA. and \bauthor\bsnmBalakrishnan, \bfnmSivaraman\binitsS. (\byear2020). \btitleUniversal Inference. \bjournalProceedings of the National Academy of Sciences \bvolume117 \bpages16880–16890. \endbibitem
- {barticle}[author] \bauthor\bsnmWilks, \bfnmSamuel S\binitsS. S. (\byear1938). \btitleThe large-sample distribution of the likelihood ratio for testing composite hypotheses. \bjournalThe Annals of Mathematical Statistics \bvolume9 \bpages60–62. \endbibitem
- {barticle}[author] \bauthor\bsnmZhang, \bfnmXianyang\binitsX., \bauthor\bsnmYao, \bfnmShun\binitsS. and \bauthor\bsnmShao, \bfnmXiaofeng\binitsX. (\byear2018). \btitleConditional mean and quantile dependence testing in high dimension. \bjournalThe Annals of Statistics \bvolume46 \bpages219–246. \endbibitem
- {barticle}[author] \bauthor\bsnmZhong, \bfnmPing-Shou\binitsP.-S. and \bauthor\bsnmChen, \bfnmSong Xi\binitsS. X. (\byear2011). \btitleTests for high-dimensional regression coefficients with factorial designs. \bjournalJournal of the American Statistical Association \bvolume106 \bpages260–274. \endbibitem
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.