Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Neural Latent Dependency Model for Sequence Labeling (2011.05009v1)

Published 10 Nov 2020 in cs.LG

Abstract: Sequence labeling is a fundamental problem in machine learning, natural language processing and many other fields. A classic approach to sequence labeling is linear chain conditional random fields (CRFs). When combined with neural network encoders, they achieve very good performance in many sequence labeling tasks. One limitation of linear chain CRFs is their inability to model long-range dependencies between labels. High order CRFs extend linear chain CRFs by modeling dependencies no longer than their order, but the computational complexity grows exponentially in the order. In this paper, we propose the Neural Latent Dependency Model (NLDM) that models dependencies of arbitrary length between labels with a latent tree structure. We develop an end-to-end training algorithm and a polynomial-time inference algorithm of our model. We evaluate our model on both synthetic and real datasets and show that our model outperforms strong baselines.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.