Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Exploring the acceleration of Nekbone on reconfigurable architectures (2011.04981v1)

Published 10 Nov 2020 in cs.DC

Abstract: Hardware technological advances are struggling to match scientific ambition, and a key question is how we can use the transistors that we already have more effectively. This is especially true for HPC, where the tendency is often to throw computation at a problem whereas codes themselves are commonly bound, at-least to some extent, by other factors. By redesigning an algorithm and moving from a Von Neumann to dataflow style, then potentially there is more opportunity to address these bottlenecks on reconfigurable architectures, compared to more general-purpose architectures. In this paper we explore the porting of Nekbone's AX kernel, a widely popular HPC mini-app, to FPGAs using High Level Synthesis via Vitis. Whilst computation is an important part of this code, it is also memory bound on CPUs, and a key question is whether one can ameliorate this by leveraging FPGAs. We first explore optimisation strategies for obtaining good performance, with over a 4000 times runtime difference between the first and final version of our kernel on FPGAs. Subsequently, performance and power efficiency of our approach on an Alveo U280 are compared against a 24 core Xeon Platinum CPU and NVIDIA V100 GPU, with the FPGA outperforming the CPU by around four times, achieving almost three quarters the GPU performance, and significantly more power efficient than both. The result of this work is a comparison and set of techniques that both apply to Nekbone on FPGAs specifically and are also of interest more widely in accelerating HPC codes on reconfigurable architectures.

Citations (22)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)