Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Pretraining Strategies, Waveform Model Choice, and Acoustic Configurations for Multi-Speaker End-to-End Speech Synthesis (2011.04839v1)

Published 10 Nov 2020 in cs.SD and cs.CL

Abstract: We explore pretraining strategies including choice of base corpus with the aim of choosing the best strategy for zero-shot multi-speaker end-to-end synthesis. We also examine choice of neural vocoder for waveform synthesis, as well as acoustic configurations used for mel spectrograms and final audio output. We find that fine-tuning a multi-speaker model from found audiobook data that has passed a simple quality threshold can improve naturalness and similarity to unseen target speakers of synthetic speech. Additionally, we find that listeners can discern between a 16kHz and 24kHz sampling rate, and that WaveRNN produces output waveforms of a comparable quality to WaveNet, with a faster inference time.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.