Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Attentive Social Recommendation: Towards User And Item Diversities (2011.04797v2)

Published 9 Nov 2020 in cs.AI

Abstract: Social recommendation system is to predict unobserved user-item rating values by taking advantage of user-user social relation and user-item ratings. However, user/item diversities in social recommendations are not well utilized in the literature. Especially, inter-factor (social and rating factors) relations and distinct rating values need taking into more consideration. In this paper, we propose an attentive social recommendation system (ASR) to address this issue from two aspects. First, in ASR, Rec-conv graph network layers are proposed to extract the social factor, user-rating and item-rated factors and then automatically assign contribution weights to aggregate these factors into the user/item embedding vectors. Second, a disentangling strategy is applied for diverse rating values. Extensive experiments on benchmarks demonstrate the effectiveness and advantages of our ASR.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.