Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Privacy-Preserving XGBoost Inference (2011.04789v4)

Published 9 Nov 2020 in cs.CR and cs.LG

Abstract: Although ML is widely used for predictive tasks, there are important scenarios in which ML cannot be used or at least cannot achieve its full potential. A major barrier to adoption is the sensitive nature of predictive queries. Individual users may lack sufficiently rich datasets to train accurate models locally but also be unwilling to send sensitive queries to commercial services that vend such models. One central goal of privacy-preserving machine learning (PPML) is to enable users to submit encrypted queries to a remote ML service, receive encrypted results, and decrypt them locally. We aim at developing practical solutions for real-world privacy-preserving ML inference problems. In this paper, we propose a privacy-preserving XGBoost prediction algorithm, which we have implemented and evaluated empirically on AWS SageMaker. Experimental results indicate that our algorithm is efficient enough to be used in real ML production environments.

Citations (13)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.