Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

On Function Approximation in Reinforcement Learning: Optimism in the Face of Large State Spaces (2011.04622v2)

Published 9 Nov 2020 in cs.LG, cs.AI, math.OC, math.ST, stat.ML, and stat.TH

Abstract: The classical theory of reinforcement learning (RL) has focused on tabular and linear representations of value functions. Further progress hinges on combining RL with modern function approximators such as kernel functions and deep neural networks, and indeed there have been many empirical successes that have exploited such combinations in large-scale applications. There are profound challenges, however, in developing a theory to support this enterprise, most notably the need to take into consideration the exploration-exploitation tradeoff at the core of RL in conjunction with the computational and statistical tradeoffs that arise in modern function-approximation-based learning systems. We approach these challenges by studying an optimistic modification of the least-squares value iteration algorithm, in the context of the action-value function represented by a kernel function or an overparameterized neural network. We establish both polynomial runtime complexity and polynomial sample complexity for this algorithm, without additional assumptions on the data-generating model. In particular, we prove that the algorithm incurs an $\tilde{\mathcal{O}}(\delta_{\mathcal{F}} H2 \sqrt{T})$ regret, where $\delta_{\mathcal{F}}$ characterizes the intrinsic complexity of the function class $\mathcal{F}$, $H$ is the length of each episode, and $T$ is the total number of episodes. Our regret bounds are independent of the number of states, a result which exhibits clearly the benefit of function approximation in RL.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.