Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Sparsely constrained neural networks for model discovery of PDEs (2011.04336v2)

Published 9 Nov 2020 in cs.LG and physics.comp-ph

Abstract: Sparse regression on a library of candidate features has developed as the prime method to discover the partial differential equation underlying a spatio-temporal data-set. These features consist of higher order derivatives, limiting model discovery to densely sampled data-sets with low noise. Neural network-based approaches circumvent this limit by constructing a surrogate model of the data, but have to date ignored advances in sparse regression algorithms. In this paper we present a modular framework that dynamically determines the sparsity pattern of a deep-learning based surrogate using any sparse regression technique. Using our new approach, we introduce a new constraint on the neural network and show how a different network architecture and sparsity estimator improve model discovery accuracy and convergence on several benchmark examples. Our framework is available at \url{https://github.com/PhIMaL/DeePyMoD}

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub