Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sinkhorn Natural Gradient for Generative Models (2011.04162v1)

Published 9 Nov 2020 in stat.ML and cs.LG

Abstract: We consider the problem of minimizing a functional over a parametric family of probability measures, where the parameterization is characterized via a push-forward structure. An important application of this problem is in training generative adversarial networks. In this regard, we propose a novel Sinkhorn Natural Gradient (SiNG) algorithm which acts as a steepest descent method on the probability space endowed with the Sinkhorn divergence. We show that the Sinkhorn information matrix (SIM), a key component of SiNG, has an explicit expression and can be evaluated accurately in complexity that scales logarithmically with respect to the desired accuracy. This is in sharp contrast to existing natural gradient methods that can only be carried out approximately. Moreover, in practical applications when only Monte-Carlo type integration is available, we design an empirical estimator for SIM and provide the stability analysis. In our experiments, we quantitatively compare SiNG with state-of-the-art SGD-type solvers on generative tasks to demonstrate its efficiency and efficacy of our method.

Citations (12)

Summary

We haven't generated a summary for this paper yet.