Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Learning to Model and Ignore Dataset Bias with Mixed Capacity Ensembles (2011.03856v1)

Published 7 Nov 2020 in cs.LG, cs.CL, and cs.CV

Abstract: Many datasets have been shown to contain incidental correlations created by idiosyncrasies in the data collection process. For example, sentence entailment datasets can have spurious word-class correlations if nearly all contradiction sentences contain the word "not", and image recognition datasets can have tell-tale object-background correlations if dogs are always indoors. In this paper, we propose a method that can automatically detect and ignore these kinds of dataset-specific patterns, which we call dataset biases. Our method trains a lower capacity model in an ensemble with a higher capacity model. During training, the lower capacity model learns to capture relatively shallow correlations, which we hypothesize are likely to reflect dataset bias. This frees the higher capacity model to focus on patterns that should generalize better. We ensure the models learn non-overlapping approaches by introducing a novel method to make them conditionally independent. Importantly, our approach does not require the bias to be known in advance. We evaluate performance on synthetic datasets, and four datasets built to penalize models that exploit known biases on textual entailment, visual question answering, and image recognition tasks. We show improvement in all settings, including a 10 point gain on the visual question answering dataset.

Citations (57)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.