Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 29 tok/s Pro
2000 character limit reached

Dual Application of Speech Enhancement for Automatic Speech Recognition (2011.03840v1)

Published 7 Nov 2020 in cs.SD and eess.AS

Abstract: In this work, we exploit speech enhancement for improving a recurrent neural network transducer (RNN-T) based ASR system. We employ a dense convolutional recurrent network (DCRN) for complex spectral mapping based speech enhancement, and find it helpful for ASR in two ways: a data augmentation technique, and a preprocessing frontend. In using it for ASR data augmentation, we exploit a KL divergence based consistency loss that is computed between the ASR outputs of original and enhanced utterances. In using speech enhancement as an effective ASR frontend, we propose a three-step training scheme based on model pretraining and feature selection. We evaluate our proposed techniques on a challenging social media English video dataset, and achieve an average relative improvement of 11.2% with speech enhancement based data augmentation, 8.3% with enhancement based preprocessing, and 13.4% when combining both.

Citations (33)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.