Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Sharp Thresholds in Random Simple Temporal Graphs (2011.03738v4)

Published 7 Nov 2020 in cs.DM

Abstract: A graph whose edges only appear at certain points in time is called a temporal graph (among other names). Such a graph is temporally connected if each ordered pair of vertices is connected by a path which traverses edges in chronological order (i.e., a temporal path). In this paper, we consider a simple model of random temporal graph, obtained from an Erd\H{o}s-R\'enyi random graph $G~G_{n,p}$ by considering a random permutation $\pi$ of the edges and interpreting the ranks in $\pi$ as presence times. Temporal reachability in this model exhibits a surprisingly regular sequence of thresholds. In particular, we show that at $p=\log n/n$ any fixed pair of vertices can a.a.s. reach each other; at $2\log n/n$ at least one vertex (and in fact, any fixed vertex) can a.a.s. reach all others; and at $3\log n/n$ all the vertices can a.a.s. reach each other, i.e., the graph is temporally connected. Furthermore, the graph admits a temporal spanner of size $2n+o(n)$ as soon as it becomes temporally connected, which is nearly optimal as $2n-4$ is a lower bound. This result is significant because temporal graphs do not admit spanners of size $O(n)$ in general (Kempe et al, STOC 2000). In fact, they do not even admit spanners of size $o(n2)$ (Axiotis et al, ICALP 2016). Thus, our result implies that the obstructions found in these works, and more generally, all non-negligible obstructions, must be statistically insignificant: nearly optimal spanners always exist in random temporal graphs. All the above thresholds are sharp. Carrying the study of temporal spanners further, we show that pivotal spanners -- i.e., spanners of size $2n-2$ made of two spanning trees glued at a single vertex (one descending in time, the other ascending subsequently) -- exist a.a.s. at $4\log n/n$, this threshold being also sharp. Finally, we show that optimal spanners (of size $2n-4$) also exist a.a.s. at $p = 4\log n/n$.

Citations (23)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.