Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
60 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Acoustics Based Intent Recognition Using Discovered Phonetic Units for Low Resource Languages (2011.03646v2)

Published 7 Nov 2020 in cs.CL and cs.AI

Abstract: With recent advancements in language technologies, humans are now speaking to devices. Increasing the reach of spoken language technologies requires building systems in local languages. A major bottleneck here are the underlying data-intensive parts that make up such systems, including automatic speech recognition (ASR) systems that require large amounts of labelled data. With the aim of aiding development of spoken dialog systems in low resourced languages, we propose a novel acoustics based intent recognition system that uses discovered phonetic units for intent classification. The system is made up of two blocks - the first block is a universal phone recognition system that generates a transcript of discovered phonetic units for the input audio, and the second block performs intent classification from the generated phonetic transcripts. We propose a CNN+LSTM based architecture and present results for two languages families - Indic languages and Romance languages, for two different intent recognition tasks. We also perform multilingual training of our intent classifier and show improved cross-lingual transfer and zero-shot performance on an unknown language within the same language family.

Citations (15)

Summary

We haven't generated a summary for this paper yet.