Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Ridge Regression with Frequent Directions: Statistical and Optimization Perspectives (2011.03607v1)

Published 6 Nov 2020 in cs.LG, cs.DS, and stat.ML

Abstract: Despite its impressive theory & practical performance, Frequent Directions (\acrshort{fd}) has not been widely adopted for large-scale regression tasks. Prior work has shown randomized sketches (i) perform worse in estimating the covariance matrix of the data than \acrshort{fd}; (ii) incur high error when estimating the bias and/or variance on sketched ridge regression. We give the first constant factor relative error bounds on the bias & variance for sketched ridge regression using \acrshort{fd}. We complement these statistical results by showing that \acrshort{fd} can be used in the optimization setting through an iterative scheme which yields high-accuracy solutions. This improves on randomized approaches which need to compromise the need for a new sketch every iteration with speed of convergence. In both settings, we also show using \emph{Robust Frequent Directions} further enhances performance.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)