Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Single-Node Attacks for Fooling Graph Neural Networks (2011.03574v2)

Published 6 Nov 2020 in cs.LG and cs.AI

Abstract: Graph neural networks (GNNs) have shown broad applicability in a variety of domains. These domains, e.g., social networks and product recommendations, are fertile ground for malicious users and behavior. In this paper, we show that GNNs are vulnerable to the extremely limited (and thus quite realistic) scenarios of a single-node adversarial attack, where the perturbed node cannot be chosen by the attacker. That is, an attacker can force the GNN to classify any target node to a chosen label, by only slightly perturbing the features or the neighbor list of another single arbitrary node in the graph, even when not being able to select that specific attacker node. When the adversary is allowed to select the attacker node, these attacks are even more effective. We demonstrate empirically that our attack is effective across various common GNN types (e.g., GCN, GraphSAGE, GAT, GIN) and robustly optimized GNNs (e.g., Robust GCN, SM GCN, GAL, LAT-GCN), outperforming previous attacks across different real-world datasets both in a targeted and non-targeted attacks. Our code is available at https://github.com/benfinkelshtein/SINGLE .

Citations (11)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com