Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

On the Stability Properties and the Optimization Landscape of Training Problems with Squared Loss for Neural Networks and General Nonlinear Conic Approximation Schemes (2011.03293v3)

Published 6 Nov 2020 in math.OC and cs.LG

Abstract: We study the optimization landscape and the stability properties of training problems with squared loss for neural networks and general nonlinear conic approximation schemes. It is demonstrated that, if a nonlinear conic approximation scheme is considered that is (in an appropriately defined sense) more expressive than a classical linear approximation approach and if there exist unrealizable label vectors, then a training problem with squared loss is necessarily unstable in the sense that its solution set depends discontinuously on the label vector in the training data. We further prove that the same effects that are responsible for these instability properties are also the reason for the emergence of saddle points and spurious local minima, which may be arbitrarily far away from global solutions, and that neither the instability of the training problem nor the existence of spurious local minima can, in general, be overcome by adding a regularization term to the objective function that penalizes the size of the parameters in the approximation scheme. The latter results are shown to be true regardless of whether the assumption of realizability is satisfied or not. We demonstrate that our analysis in particular applies to training problems for free-knot interpolation schemes and deep and shallow neural networks with variable widths that involve an arbitrary mixture of various activation functions (e.g., binary, sigmoid, tanh, arctan, soft-sign, ISRU, soft-clip, SQNL, ReLU, leaky ReLU, soft-plus, bent identity, SILU, ISRLU, and ELU). In summary, the findings of this paper illustrate that the improved approximation properties of neural networks and general nonlinear conic approximation instruments are linked in a direct and quantifiable way to undesirable properties of the optimization problems that have to be solved in order to train them.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)