Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 131 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Does enforcing fairness mitigate biases caused by subpopulation shift? (2011.03173v2)

Published 6 Nov 2020 in stat.ML and cs.LG

Abstract: Many instances of algorithmic bias are caused by subpopulation shifts. For example, ML models often perform worse on demographic groups that are underrepresented in the training data. In this paper, we study whether enforcing algorithmic fairness during training improves the performance of the trained model in the \emph{target domain}. On one hand, we conceive scenarios in which enforcing fairness does not improve performance in the target domain. In fact, it may even harm performance. On the other hand, we derive necessary and sufficient conditions under which enforcing algorithmic fairness leads to the Bayes model in the target domain. We also illustrate the practical implications of our theoretical results in simulations and on real data.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.