Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Tunable Robust Pruning Framework Through Dynamic Network Rewiring of DNNs (2011.03083v2)

Published 3 Nov 2020 in cs.CV, cs.CR, and cs.LG

Abstract: This paper presents a dynamic network rewiring (DNR) method to generate pruned deep neural network (DNN) models that are robust against adversarial attacks yet maintain high accuracy on clean images. In particular, the disclosed DNR method is based on a unified constrained optimization formulation using a hybrid loss function that merges ultra-high model compression with robust adversarial training. This training strategy dynamically adjusts inter-layer connectivity based on per-layer normalized momentum computed from the hybrid loss function. In contrast to existing robust pruning frameworks that require multiple training iterations, the proposed learning strategy achieves an overall target pruning ratio with only a single training iteration and can be tuned to support both irregular and structured channel pruning. To evaluate the merits of DNR, experiments were performed with two widely accepted models, namely VGG16 and ResNet-18, on CIFAR-10, CIFAR-100 as well as with VGG16 on Tiny-ImageNet. Compared to the baseline uncompressed models, DNR provides over20x compression on all the datasets with no significant drop in either clean or adversarial classification accuracy. Moreover, our experiments show that DNR consistently finds compressed models with better clean and adversarial image classification performance than what is achievable through state-of-the-art alternatives.

Citations (66)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.