Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

From Note-Level to Chord-Level Neural Network Models for Voice Separation in Symbolic Music (2011.03028v1)

Published 5 Nov 2020 in cs.SD, cs.AI, cs.LG, and eess.AS

Abstract: Music is often experienced as a progression of concurrent streams of notes, or voices. The degree to which this happens depends on the position along a voice-leading continuum, ranging from monophonic, to homophonic, to polyphonic, which complicates the design of automatic voice separation models. We address this continuum by defining voice separation as the task of decomposing music into streams that exhibit both a high degree of external perceptual separation from the other streams and a high degree of internal perceptual consistency. The proposed voice separation task allows for a voice to diverge to multiple voices and also for multiple voices to converge to the same voice. Equipped with this flexible task definition, we manually annotated a corpus of popular music and used it to train neural networks that assign notes to voices either separately for each note in a chord (note-level), or jointly to all notes in a chord (chord-level). The trained neural models greedily assign notes to voices in a left to right traversal of the input chord sequence, using a diverse set of perceptually informed input features. When evaluated on the extraction of consecutive within voice note pairs, both models surpass a strong baseline based on an iterative application of an envelope extraction function, with the chord-level model consistently edging out the note-level model. The two models are also shown to outperform previous approaches on separating the voices in Bach music.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.