Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Switching Scheme: A Novel Approach for Handling Incremental Concept Drift in Real-World Data Sets (2011.02738v1)

Published 5 Nov 2020 in cs.LG

Abstract: Machine learning models nowadays play a crucial role for many applications in business and industry. However, models only start adding value as soon as they are deployed into production. One challenge of deployed models is the effect of changing data over time, which is often described with the term concept drift. Due to their nature, concept drifts can severely affect the prediction performance of a machine learning system. In this work, we analyze the effects of concept drift in the context of a real-world data set. For efficient concept drift handling, we introduce the switching scheme which combines the two principles of retraining and updating of a machine learning model. Furthermore, we systematically analyze existing regular adaptation as well as triggered adaptation strategies. The switching scheme is instantiated on New York City taxi data, which is heavily influenced by changing demand patterns over time. We can show that the switching scheme outperforms all other baselines and delivers promising prediction results.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.