Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

An Empirical-cum-Statistical Approach to Power-Performance Characterization of Concurrent GPU Kernels (2011.02368v2)

Published 4 Nov 2020 in cs.DC, cs.AR, and cs.GR

Abstract: Growing deployment of power and energy efficient throughput accelerators (GPU) in data centers demands enhancement of power-performance co-optimization capabilities of GPUs. Realization of exascale computing using accelerators requires further improvements in power efficiency. With hardwired kernel concurrency enablement in accelerators, inter- and intra-workload simultaneous kernels computation predicts increased throughput at lower energy budget. To improve Performance-per-Watt metric of the architectures, a systematic empirical study of real-world throughput workloads (with concurrent kernel execution) is required. To this end, we propose a multi-kernel throughput workload generation framework that will facilitate aggressive energy and performance management of exascale data centers and will stimulate synergistic power-performance co-optimization of throughput architectures. Also, we demonstrate a multi-kernel throughput benchmark suite based on the framework that encapsulates symmetric, asymmetric and co-existing (often appears together) kernel based workloads. On average, our analysis reveals that spatial and temporal concurrency within kernel execution in throughput architectures saves energy consumption by 32%, 26% and 33% in GTX470, Tesla M2050 and Tesla K20 across 12 benchmarks. Concurrency and enhanced utilization are often correlated but do not imply significant deviation in power dissipation. Diversity analysis of proposed multi-kernels confirms characteristic variation and power-profile diversity within the suite. Besides, we explain several findings regarding power-performance co-optimization of concurrent throughput workloads.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.