Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

VAW-GAN for Disentanglement and Recomposition of Emotional Elements in Speech (2011.02314v1)

Published 3 Nov 2020 in cs.SD, cs.CL, and eess.AS

Abstract: Emotional voice conversion (EVC) aims to convert the emotion of speech from one state to another while preserving the linguistic content and speaker identity. In this paper, we study the disentanglement and recomposition of emotional elements in speech through variational autoencoding Wasserstein generative adversarial network (VAW-GAN). We propose a speaker-dependent EVC framework based on VAW-GAN, that includes two VAW-GAN pipelines, one for spectrum conversion, and another for prosody conversion. We train a spectral encoder that disentangles emotion and prosody (F0) information from spectral features; we also train a prosodic encoder that disentangles emotion modulation of prosody (affective prosody) from linguistic prosody. At run-time, the decoder of spectral VAW-GAN is conditioned on the output of prosodic VAW-GAN. The vocoder takes the converted spectral and prosodic features to generate the target emotional speech. Experiments validate the effectiveness of our proposed method in both objective and subjective evaluations.

Citations (36)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.