Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Advantage of Deep Neural Networks for Estimating Functions with Singularity on Hypersurfaces (2011.02256v2)

Published 4 Nov 2020 in stat.ML and cs.LG

Abstract: We develop a minimax rate analysis to describe the reason that deep neural networks (DNNs) perform better than other standard methods. For nonparametric regression problems, it is well known that many standard methods attain the minimax optimal rate of estimation errors for smooth functions, and thus, it is not straightforward to identify the theoretical advantages of DNNs. This study tries to fill this gap by considering the estimation for a class of non-smooth functions that have singularities on hypersurfaces. Our findings are as follows: (i) We derive the generalization error of a DNN estimator and prove that its convergence rate is almost optimal. (ii) We elucidate a phase diagram of estimation problems, which describes the situations where the DNNs outperform a general class of estimators, including kernel methods, Gaussian process methods, and others. We additionally show that DNNs outperform harmonic analysis based estimators. This advantage of DNNs comes from the fact that a shape of singularity can be successfully handled by their multi-layered structure.

Citations (16)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.