Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Incremental Machine Speech Chain Towards Enabling Listening while Speaking in Real-time (2011.02126v1)

Published 4 Nov 2020 in cs.CL, cs.SD, and eess.AS

Abstract: Inspired by a human speech chain mechanism, a machine speech chain framework based on deep learning was recently proposed for the semi-supervised development of automatic speech recognition (ASR) and text-to-speech synthesis TTS) systems. However, the mechanism to listen while speaking can be done only after receiving entire input sequences. Thus, there is a significant delay when encountering long utterances. By contrast, humans can listen to what hey speak in real-time, and if there is a delay in hearing, they won't be able to continue speaking. In this work, we propose an incremental machine speech chain towards enabling machine to listen while speaking in real-time. Specifically, we construct incremental ASR (ISR) and incremental TTS (ITTS) by letting both systems improve together through a short-term loop. Our experimental results reveal that our proposed framework is able to reduce delays due to long utterances while keeping a comparable performance to the non-incremental basic machine speech chain.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.