Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Optimal Control-Based Baseline for Guided Exploration in Policy Gradient Methods (2011.02073v5)

Published 4 Nov 2020 in cs.LG, cs.AI, cs.RO, cs.SY, and eess.SY

Abstract: In this paper, a novel optimal control-based baseline function is presented for the policy gradient method in deep reinforcement learning (RL). The baseline is obtained by computing the value function of an optimal control problem, which is formed to be closely associated with the RL task. In contrast to the traditional baseline aimed at variance reduction of policy gradient estimates, our work utilizes the optimal control value function to introduce a novel aspect to the role of baseline -- providing guided exploration during policy learning. This aspect is less discussed in prior works. We validate our baseline on robot learning tasks, showing its effectiveness in guided exploration, particularly in sparse reward environments.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.