Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Optimal Control-Based Baseline for Guided Exploration in Policy Gradient Methods (2011.02073v5)

Published 4 Nov 2020 in cs.LG, cs.AI, cs.RO, cs.SY, and eess.SY

Abstract: In this paper, a novel optimal control-based baseline function is presented for the policy gradient method in deep reinforcement learning (RL). The baseline is obtained by computing the value function of an optimal control problem, which is formed to be closely associated with the RL task. In contrast to the traditional baseline aimed at variance reduction of policy gradient estimates, our work utilizes the optimal control value function to introduce a novel aspect to the role of baseline -- providing guided exploration during policy learning. This aspect is less discussed in prior works. We validate our baseline on robot learning tasks, showing its effectiveness in guided exploration, particularly in sparse reward environments.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.