Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Quasi Monte Carlo Time-Frequency Analysis (2011.02025v3)

Published 3 Nov 2020 in math.NA, cs.NA, and eess.SP

Abstract: We study signal processing tasks in which the signal is mapped via some generalized time-frequency transform to a higher dimensional time-frequency space, processed there, and synthesized to an output signal. We show how to approximate such methods using a quasi-Monte Carlo (QMC) approach. We consider cases where the time-frequency representation is redundant, having feature axes in addition to the time and frequency axes. The proposed QMC method allows sampling both efficiently and evenly such redundant time-frequency representations. Indeed, 1) the number of samples required for a certain accuracy is log-linear in the resolution of the signal space, and depends only weakly on the dimension of the redundant time-frequency space, and 2) the quasi-random samples have low discrepancy, so they are spread evenly in the redundant time-frequency space. One example of such redundant representation is the localizing time-frequency transform (LTFT), where the time-frequency plane is enhanced by a third axis. This higher dimensional time-frequency space improves the quality of some time-frequency signal processing tasks, like the phase vocoder (an audio signal processing effect). Since the computational complexity of the QMC is log-linear in the resolution of the signal space, this higher dimensional time-frequency space does not degrade the computation complexity of the proposed QMC method. The proposed QMC method is more efficient than standard Monte Carlo methods, since the deterministic QMC sample points are optimally spread in the time-frequency space, while random samples are not.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.