Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

The Min-Cost Matching with Concave Delays Problem (2011.02017v1)

Published 3 Nov 2020 in cs.DS

Abstract: We consider the problem of online min-cost perfect matching with concave delays. We begin with the single location variant. Specifically, requests arrive in an online fashion at a single location. The algorithm must then choose between matching a pair of requests or delaying them to be matched later on. The cost is defined by a concave function on the delay. Given linear or even convex delay functions, matching any two available requests is trivially optimal. However, this does not extend to concave delays. We solve this by providing an $O(1)$-competitive algorithm that is defined through a series of delay counters. Thereafter we consider the problem given an underlying $n$-points metric. The cost of a matching is then defined as the connection cost (as defined by the metric) plus the delay cost. Given linear delays, this problem was introduced by Emek et al. and dubbed the Min-cost perfect matching with linear delays (MPMD) problem. Liu et al. considered convex delays and subsequently asked whether there exists a solution with small competitive ratio given concave delays. We show this to be true by extending our single location algorithm and proving $O(\log n)$ competitiveness. Finally, we turn our focus to the bichromatic case, wherein requests have polarities and only opposite polarities may be matched. We show how to alter our former algorithms to again achieve $O(1)$ and $O(\log n)$ competitiveness for the single location and for the metric case.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.